Skip to main content

Discrete Variable Method

  • Chapter
Numerical Quantum Dynamics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 9))

  • 703 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dickinson, A. S., and Certain, P. R. (1968). “Calculation of Matrix Elements for One-Dimensional Problems,” J, Chem. Phys. 49, 4209–4211

    Article  MathSciNet  ADS  Google Scholar 

  2. Light, J. C, Hamilton, I. P., and Lill, J. V. (1985). Generalized discrete variable approximation in quantum mechanics,” J. Chem. Phys. 82, 1400–1409

    Article  ADS  Google Scholar 

  3. Melezhik, V. S., (1993). “Three-dimensional hydrogen atom in crossed magnetic and electric fields,” Phys. Rev. A48, 4528–4537

    ADS  Google Scholar 

  4. Schweizer, W. and Faßbinder, P. (1997). “The discrete variable method for non-integrable quantum systems,” Comp. in Phys. 11, 641–646

    Article  ADS  Google Scholar 

  5. Faßbinder, P. and Schweizer, W. (1996). “Hydrogen atom in very strong magnetic and electric fields,” Phys. Rev. A53, 2135–2139

    ADS  Google Scholar 

  6. Faßbinder, P., Schweizer, W. and Uzer, T. (1997). “Numerical simulation of electronic wave-packet evolution,” Phys. Rev. A56, 3626–3629

    ADS  Google Scholar 

  7. Muckerman, J. T. (1990). “Some useful discrete variable representations for problems in time-dependent and time-independent quantum dynamics,” Chem. Phys. Lett. 173, 200–205

    Article  ADS  Google Scholar 

  8. Lill, J. V., Parker, G. A., and Light, J. C. (1982). “Discrete variable representations and sudden models in quantum scattering theory,” Chem. Phys. Lett. 89, 483–489

    Article  ADS  Google Scholar 

  9. Colbert, D. T., and Miller, W. H. (1992). “A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method,” J. Chem. Phys. 96, 1982–1991

    Article  ADS  Google Scholar 

  10. Groenenboom, G. C., and Colbert, D. T. (1993). “Combining the discrete variable representation with the S-matrix Kohn method for quantum reactive scattering,” J. Chem Phys. 99, 9681–9696

    Article  ADS  Google Scholar 

  11. Eisenberg, E., Baram, A. and Baer, M, (1995). “Calculation of the density of states using discrete variable representation and Toepliitz matrices,” J. Phys. A28, L433–438. Eisenberg, E., Ron, S. and Baer, M. (1994). “Toeplitz matrices within DVR formulation: Application to quantum scattering problems,” J. Chem. Phys. 101, 3802–3805

    MathSciNet  ADS  Google Scholar 

  12. Szegö, G., (1975). Orthogonal Polynomials. Ameri. Math. Soc., Providence, Rhode Island

    MATH  Google Scholar 

  13. Nikiforov, A. F., Suslov, S. K., and Uvarov, V. B. (1991). Classcial Ortgogonal Polynomials of a Discrete Variable. Springer-Verlag, Berlin

    Google Scholar 

  14. Corey, G. C., Lemoine, D. (1992). “Pseudospectral method for solving the time-dependent Schrödinger equation in spherical coordiantes,” J. Chem, Phys. 97, 4115–4126

    Article  ADS  Google Scholar 

  15. Kosloff, R., (194). “Propagation methods for quantum molecular dynamics,” Annu. Rev. Phys. Chem. 45, 145–178

    Article  Google Scholar 

  16. Nikiforov, A. F., and Uvarov, V. B., (1988). Special functions of mathematical physics Birkhäuser, Basel

    MATH  Google Scholar 

  17. Tricomi, F. (1955). Vorlesungen über Orthogonalreihen. Springer, Heidelberg

    MATH  Google Scholar 

  18. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipies. Cambridge University Press

    Google Scholar 

  19. Abramowitz, M. and Stegun, I. A. (1970). Handbook of Mathematical Functions. Dover Publications, Inc., New York

    Google Scholar 

  20. Gradstein, I. and Ryshik, I. (1981). Tafeln-Tables. Verlag Harry Deutsch, Frankfurt

    Google Scholar 

  21. Hey J. (1993). “On the momentum representation of hydroenic wave functions: Some properties and an application”, Am. J. Phys. 61, 28–35

    Article  ADS  Google Scholar 

  22. Broad, J. T. (1985). “Calculation of two-photon processes in hydrogen with an basis L 2 basis” Phys. Rev. A31, 1494–1514

    ADS  Google Scholar 

  23. Flügge, S. (1994). Practical Quantum Mechanics. Springer-Verlag, Berlin

    Google Scholar 

  24. Hannsen, J., McCarrol, R. and Valiron, P. (1979). “Model potential calculations of the Na-He system”, J. Phys. B12, 899–908

    ADS  Google Scholar 

  25. Schweizer, W., Faßbinder, P. and González-Férez, R. (1999). “Model potentials for Alkali metal atoms and Li-like Ions,” ADNDT 72, 33–55

    Article  ADS  Google Scholar 

  26. Berezin, I. S. and Zhidkov, N. P. (1966). Numerical Methods, Nauka, Moscow (in Russian), (German translation in VEB Leipzig)

    Google Scholar 

  27. Bethe, H. A. and Salpeter, E. E. (1957). Quantum Mechanics of One-and Two-Electron Systems. Springer-Verlag, Berlin

    Google Scholar 

  28. Regge, T. (1958). “Symmetry properties of Clebsch-Gordan’s coefficients”, Nuovo Cim. 10, 544–545

    Article  MATH  Google Scholar 

  29. Baye, D. (1997). “Lagrange-mesh calculations of halo nuclei”, Nucl. Phys. A 627, 305–323

    ADS  Google Scholar 

  30. Godefroid, M., Liévin, J. and Heenen, P.-H. (1989). “Laguerre meshes in atomic structure calculations,” J. Phys. B 22, 3119–3136

    ADS  Google Scholar 

  31. Baye, D. and Vincke, M. (1991). “Magnetized hydrogen atom on a Laguerre mesh,” J. Phys. B 24, 3551–3564

    ADS  Google Scholar 

  32. Baye, D. and Heenen, P.-H (1986). “Generalized meshes for quantum mechanical problems,” J. Phys. A 19, 2041–2059

    MathSciNet  ADS  Google Scholar 

  33. Canuto, V. and Ventura, J. (1977). Quantizing magnetic fields in astrophysics. Gordon and Breach Sci. Pub., New York

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Discrete Variable Method. In: Numerical Quantum Dynamics. Progress in Theoretical Chemistry and Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/0-306-47617-7_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47617-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0215-1

  • Online ISBN: 978-0-306-47617-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics