Skip to main content

Single-Wall Carbon Nanotubes and Single-Wall Carbon Nanohorns

  • Chapter
Perspectives of Fullerene Nanotechnology
  • 553 Accesses

Abstract

Metal catalysts take forms of nanometer-sized particles in the condensed carbon phase and catalyze the growth of single-wall carbon nanotubes at about 1200 °C. The good metal catalysts in forming single-wall carbon nanotubes must satisfy at least three conditions: (1) be a good graphitization catalyst, (2) have low solubility in graphite, and (3) have a stable crystallographic orientation on graphite. The large-scale production of single-wall carbon nanotubes is difficult. On the other hand, single-wall carbon nanohorns (SWNH) are formed with a high purity of 90% and a yield of 90% at room temperature. The SWNHs are nanometer-scale graphene tubules and form aggregates with diameters of about 80–100 nm. The SWNH aggregates might be useful in adsorption/storage of various gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima and T. Ichihashi, Nature 363 (1993) 603.

    Article  CAS  Google Scholar 

  2. D. S. Bethune, C. H. Kiang, M. S. Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, ibid. 363 (1993) 605.

    Article  CAS  Google Scholar 

  3. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, Chem. Phys. Lett. 243 (1995) 49.

    Article  CAS  Google Scholar 

  4. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. Chapelle, S. Lefrant, P. Deniard, R. Lee and J. E. Fisher, Nature 388 (1997) 756.

    CAS  Google Scholar 

  5. J. F. Colmer, C. Stephan, S. Lefrant, G. V. Tendeloo, U. Eiliams, Z. Konya, A. Fonseca, Ch. Laurent and J. B. Nagy, Chem. Phys. Lett. 317 (2000) 83.

    Google Scholar 

  6. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith and R. E. Smalley, ibid. 313 (1999) 91.

    Google Scholar 

  7. M. Yudasaka, T. Komatsu, T. Ichihashi, Y. Achiba and S. Iijima, J. Phys. Chem. B 102 (1998) 4892.

    CAS  Google Scholar 

  8. M. Yudasaka, T. Ichihashi and S. Iijima, ibid. 102 (1998) 10201.

    CAS  Google Scholar 

  9. M. Yudasaka, R. Yamada, N. Sensui, T. Wilikins, T. Ichihashi and S. Iijima, ibid. 103 (1999) 6224.

    CAS  Google Scholar 

  10. F. Kokai, K. Takahashi, M. Yudasaka and S. Iijima, J. Phys. Chem. 104 (2000) 6777.

    CAS  Google Scholar 

  11. M. Yudasaka, Y. Kasuya, M. Takizawa, S. Bandow, K. Takahashi, F. Kokai and S. Iijima, AIP Conf. Proc. (Eds.) H. Kuzmany, J. Fink, M. Mehring and A. Roth) 544 (2000) 217.

    Google Scholar 

  12. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai and K. Takahashi, Chem. Phys. Lett. 309 (1999) 165.

    Article  CAS  Google Scholar 

  13. D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka and S. Iijima, Mater. Res. Soc. Fall Meeting A13.27 (2000) 24 (Chem. Phys. Lett. in press, 2001).

    Google Scholar 

  14. S. Bandow, F. Kokai, K. Takahashi, M. Yudasaka, L. C. Qin and S. Iijima, Chem. Phys. Lett. 312 (2000) 514.

    Google Scholar 

  15. S. Bandow, M. Yudasaka, R. Yamada, S. Iijima, F. Kokai and K. Takahashi, Mol. Cryst. Liq. Cryst. 340 (2000) 749; S. Garaj, L. Thien-Nga, R. Goal, L. Forro, K. Takahashi, F. Kokai and M. Yudasaka and S. Iijima, Phys. Rev. B 62 (2000) 17115.

    CAS  Google Scholar 

  16. R. Gaal, et al., Phys. Rev. B (to be published).

    Google Scholar 

  17. D. Kasuya, J. Phys. Chem. B (in press).

    Google Scholar 

  18. K. Murata and K. Kaneko, J. Phys. Chem. B 105 (2001) 10210.

    CAS  Google Scholar 

  19. J. A. Nisha, M. Yudasaka, S. Bandow, F. Kokai, K. Takahashi and S. Iijima, Chem. Phys. Lett. 328 (2000) 381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Yudasaka, M. (2002). Single-Wall Carbon Nanotubes and Single-Wall Carbon Nanohorns. In: Ōsawa, E. (eds) Perspectives of Fullerene Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/0-306-47621-5_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-47621-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7174-8

  • Online ISBN: 978-0-306-47621-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics