Skip to main content

Sulfur Compounds as Photosynthetic Electron Donors

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

Most photosynthetic bacteria can grow photoautotrophically using inorganic sulfur compounds (i. e. sulfide, sulfur, polysulfides, thiosulfate, or sulfite) as electron donors for CO2 fixation. The different types of phototrophs that use sulfur compounds as electron donors, and their varying sulfur-oxidizing capabilities are briefly described. Several species of purple sulfur bacteria can also grow aerobically or microaerophilically as chemolithotrophs, oxidizing sulfur compounds to obtain energy as well as electrons for CO2 reduction. They share this ability with nonphotosynthetic sulfur bacteria such as thiobacilli. Although thiobacilli are not particularly closely related to purple sulfur bacteria, studies on sulfur oxidation by thiobacilli have yielded information that may be relevant to sulfur oxidation by photosynthetic bacteria. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from photosynthetic bacteria, and possible pathways for sulfur oxidation involving those enzymes are discussed. Except for flavocytochrome c and sulfide-quinone reductase, which catalyze electron transfer from sulfide to cytochrome c and quinone, respectively, the in vivo electron acceptors used by the sulfur-oxidizing enzymes are generally unknown. So far, no enzyme has been isolated that catalyzes oxidation of elemental sulfur, and some new possibilities for how elemental sulfur is oxidized are considered. Finally, some suggestions for future research are made that use metabolically versatile purple bacteria to examine donation of electrons by sulfur compounds to the electron transport chain, active transport of ionic sulfur compounds, and the molecular genetics of sulfur-oxidizing enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amesz J (1991) Green photosynthetic bacteria and heliobacteria. In: Shively JM and Barton LL (eds) Variations in Autotrophic Life, pp 99–119. Academic Press, London

    Google Scholar 

  • Arieli B Padan E and Shahak Y (1991) Sulfide-induced sulfide-quinone reductase activity in thylakoids of Oscillatoria limnetica. J Biol Chem 286: 104–111

    Google Scholar 

  • Bacon M and Ingledew WJ (1989) The reductive reactions of Thiobacillus ferrooxidans on sulphur and selenium. FEMS Microbiol Lett 58: 189–194

    Article  CAS  Google Scholar 

  • Bak F and Pfennig N (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147: 184–189

    Article  CAS  Google Scholar 

  • Bartsch RG (1978) Cytochromes. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 249–279. Plenum Press, New York

    Google Scholar 

  • Bartsch RG (1991) The distribution of soluble metallo-redox proteins in purple phototrophic bacteria. Biochim Biophys Acta 1058: 28–30

    CAS  PubMed  Google Scholar 

  • Beffa T, Berczy M and Aragno M (1992a) Inhibition of respiratory oxidation of elemental sulfur (So) and thiosulfate in Thiobacillus versutus and another sulfur-oxidizing bacterium. FEMS Microbiol Lett 90: 123–128

    Article  CAS  Google Scholar 

  • Beffa T, Fischer C and Aragno M (1992b) Respiratory oxidation of reduced sulfur compounds by intact cells of Thiobacillus tepidarius (type strain). Arch Microbiol 158: 456–458

    Article  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33: 91–111

    Article  CAS  PubMed  Google Scholar 

  • Bramlett RN and Peck HD Jr. (1975) Some physical and kinetic properties of adenylyl sulfate reductase from Desulfovibrio vulgaris. J Biol Chem 250: 2979–2986

    CAS  PubMed  Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim. Biophys Acta 975: 189–221

    CAS  PubMed  Google Scholar 

  • Brune DC and Trüper HG (1986) Noncyclic electron transport in chromatophores from photolithotrophically grown Rhodobacter sulfidophilus. Arch Microbiol 145: 295–301

    Article  CAS  Google Scholar 

  • Caumette P, Baulaigue R and Matheron R (1988) Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salinas. Syst Appl Microbiol 10: 284–292

    Google Scholar 

  • Caumette P, Baulaigue R and Matheron R (1991) Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155: 170–176

    Article  Google Scholar 

  • Cerletti P (1986) Seeking a better job for an under-employed enzyme: rhodanese. Trends Biochem Sci 11: 369–372

    Article  CAS  Google Scholar 

  • Chandra TS and Friedrich CG (1986) Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantophora. J Bacteriol 166: 446–452

    CAS  PubMed  Google Scholar 

  • Chauncey TR, Uhteg LC and Westley J (1987) Thiosulfate reductase. Meth Enzymol 143: 350–354

    CAS  PubMed  Google Scholar 

  • Chen Z, Koh M, Van Dreissche G, Van Beeumen JJ, Bartsch RG, Meyer TE, Cusanovich MA and Mathews FS (1994) The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. Science 266: 430–432

    CAS  PubMed  Google Scholar 

  • Cusanovich MA, Meyer TE and Tollin G (1985) Flavocytochromes c: Transient kinetics of photoreduction by flavin analogues. Biochemistry 24: 1281–1287

    Article  CAS  PubMed  Google Scholar 

  • Dahl C and Trüper HG (1989) Comparative enzymology of sulfite oxidation in Thiocapsa roseopersicina strains 6311, M1, and BBS under chemotrophic and phototrophic conditions. Z Naturforsch 44c: 617–622

    Google Scholar 

  • Dannenberg S, Kroder M, Dillling W and Cypionka H (1992) Oxidation of H2 organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch Microbiol 158: 93–99

    Article  CAS  Google Scholar 

  • Davidson MW, Gray GO and Knaff DB (1985) Interaction of Chromatium vinosum flavocytochrome c-552 with cytochromes c studied by affinity chromatography. FEBS Lett 187: 155–159

    Article  CAS  Google Scholar 

  • De Wit R and van Gemerden H (1990) Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73: 69–76

    Google Scholar 

  • Dolata MM, van Beeumen JJ, Ambler RP, Meyer TE and Cusanovich MA (1993) Nucleotide sequence of the heme subunit of flavocytochrome c from the purple photosynthetic bacterium Chromatium vinosum. J Biol Chem 268: 14426–14431

    CAS  PubMed  Google Scholar 

  • Fischer U (1984) Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic sulfur bacteria. In: Müller A and Krebs B (eds) Sulfur, Its Significance for Chemistry, for the Geo-, Bio-and Cosmosphere and Technology, pp 383–407. Elsevier, Amsterdam

    Google Scholar 

  • Fischer U (1988) Sulfur in biotechnology. In: Rehm HJ and Reed G (eds) Biotechnology, Vol 6b pp 463–496. VCH Verlagsge-sellschaft, Weinheim

    Google Scholar 

  • Fischer U (1989) Enzymatic steps and dissimilatory sulfur metabolism by whole cells of anoxyphotobacteria. In: Saltzman ES and Cooper WJ (eds) Biogenic Sulfur in the Environment pp 262–279. American Chemical Society, Washington, DC

    Google Scholar 

  • Fischer U and Ufken H (1991) Soluble electron transfer proteins of Amoebobacter pedioformis. Abstract 68A, VII International Symposium on Photosynthetic Prokaryotes, Amherst, MA

    Google Scholar 

  • Friedrich CG, Meyer O and Chandra TS (1986) Molybdenum-dependent sulfur oxidation in facultatively lithoautotrophic thiobacteria. FEMS Microbiol Lett 37: 105–108

    Article  CAS  Google Scholar 

  • Fry B, Gest H and Hayes JM (1985) Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum. FEMS Microbiol Lett 27: 227–232

    Article  CAS  PubMed  Google Scholar 

  • Fukumori Y and Yamanaka T (1979) Flavocytochrome c of Chromatium vinosum. Some enzymatic properties and subunit structure. J Biochem 85: 1405–1414

    CAS  PubMed  Google Scholar 

  • Gest H (1993) History of concepts of the comparative biochemistry of oxygenic and anoxygenic photosynthesis. Photosynth Res 35: 87–96

    Article  CAS  Google Scholar 

  • Gorlenko VM (1988) Ecological niches ofgreen sulfur and green gliding bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 257–267. Plenum Press, New York

    Google Scholar 

  • Hansen TA and van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Microbiol 86: 49–56

    CAS  Google Scholar 

  • Hashwa F (1975) Thiosulfate metabolism in someredphototrophic bacteria. Plant Soil 43: 41–47

    Article  CAS  Google Scholar 

  • Hol WGJ, Lijk LJ and Kalk KH (1983) The high resolution three-dimensional structure of bovine liver rhodanese. Fundam Appl Toxicol 3: 370–376

    CAS  PubMed  Google Scholar 

  • Hunter CN and Mann NH (1992) Genetic manipulation of photosynthetic prokaryotes. In: Mann NH and Carr NG (eds) Photosynthetic Prokaryotes, pp 153–179. Plenum Press, New York

    Google Scholar 

  • Hurt EC and Hauska G (1984) Purification of membrane-bound cytochromes and a photoactive P840 protein complex of the green sulfur bacterium Chlorobium limicola f. thiosul-fatophilum. FEBS Lett 168: 149–154

    Article  CAS  Google Scholar 

  • Imhoff JF (1992a) Taxonomy, physiology, and general ecology of anoxygenic phototrophic bacteria. In: Mann NH and Carr NG (eds) Photosynthetic Prokaryotes, pp 53–92. Plenum Press, New York

    Google Scholar 

  • Imhoff JF (1992b) The family Ectothiorhodospiraceae. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer KH (eds) The Prokaryotes, Second Ed, pp 3222–3229. Springer-Verlag, New York

    Google Scholar 

  • Imhoff JF and Trüper HG (1992) The genus Rhodospirillum and related genera. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer KH (eds) The Prokaryotes, Second Ed, pp 2141–2155. Springer-Verlag, New York

    Google Scholar 

  • Javor BJ, Wilmot DB and Vetter RD (1990) pH-Dependent metabolism of thiosulfate and sulfur globules in the chemolithotrophic marine bacterium Thiomicrospira crunogena. Arch Microbiol 154: 231–238

    Article  CAS  Google Scholar 

  • Kämpf C and Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127: 125–135

    Google Scholar 

  • Kämpf C and Pfennig N (1986) Chemoautotrophic growth of Thiocystis violacea, Chromatium gracile and Cm. vinosum in the dark at various oxygen concentrations. J Basic Microbiol 26: 517–531

    Google Scholar 

  • Kelly DP (1989) Physiology and biochemistry of unicellular sulfur bacteria. In: Schlegel HG and Bowien B (eds) Autotrophic Bacteria, pp 193–217. Science Tech Publishers, Madison, WI

    Google Scholar 

  • Khanna S and Nicholas DJD (1982) Utilization of tetrathionate and35S-labelled thiosulfate by washed cells of Chlorobium vibrioforme f. sp. thiosulfatophilum. J Gen Microbiol 128: 1027–1034

    CAS  Google Scholar 

  • Khanna S and Nicholas DJD (1983) Substrate phosphorylation in Chlorobium vibrioforme f. sp. thiosulfatophilum. J Gen Microbiol 129: 1365–1370

    CAS  Google Scholar 

  • Kirchoff J and Trüper HG (1974) Adenylyl sulfate reductase of Chlorobium limicola. Arch Microbiol 100: 115–120

    Google Scholar 

  • Knaff DB and Buchanan BB (1975) Cytochrome b and sulfur bacteria. Biochim Biophys Acta 376: 549–560

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Katsura E, Kondo T and Ishimoto M (1978) Chromatium sulfite reductase. I. Characterization of thiosulfateforming activity at the cell extract level. J Biochem 84: 1209–1215

    CAS  PubMed  Google Scholar 

  • Kodama A and Mori T (1968) Studies on the metabolism of a sulfur-oxidizing bacterium. IV. Growth and oxidation of sulfur compounds in Thiobacillus thiooxidans. Plant Cell Physiol 9: 709–723

    CAS  Google Scholar 

  • Kompantseva EJ (1985) Rhodobacter euryhalinus sp. nov., a new halophilic bacterial species. Mikrobiologiya 54: 974–982

    CAS  Google Scholar 

  • Kompantseva EJ and Gorlenko VM (1984) A new species of moderately halophilic purple bacterium Rhodospirillum mediosalinum sp. nov. Microbiologiya 53: 775–783

    Google Scholar 

  • Kondratieva EN (1989) Chemolithotrophy of phototrophic bacteria. In: Schlegel HG and Bowien B (eds) Autotrophic Bacteria, pp 283–287. Science Tech Publishers, Madison, WI

    Google Scholar 

  • Kondratieva EN, Zhukov VG, Ivanovsky RN, Petushkova, Yu P and Monosov EZ (1976) The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108: 287–292

    Article  CAS  PubMed  Google Scholar 

  • Kondratieva EN, Ivanovsky RN and Krasilnikova EN (1981) Light and dark metabolism in purple sulfur bacteria. In: Skulachev VP (ed) Soviet Science Reviews Section D, Biology Reviews, pp 325–364.

    Google Scholar 

  • Kusai A and Yamanaka T (1973) An NAD(P) reductase derived from Chlorobium thiosulfatophilum: purification and some properties. Biochim Biophys Acta 292: 621–633

    CAS  PubMed  Google Scholar 

  • Kusche WH (1985) Untersuchungen an Elektronentrans-portproteinen und zum Schweffelstoffwechsel in Ectothiorhodospiraceae. PhD thesis, University of Bonn

    Google Scholar 

  • Lane DJ, Harrison Jr AP, Stahl D, Pace B, Giovannoni SJ, Olsen GJ and Pace NR (1992) Evolutionary relationships among sulfur-and iron-oxidizing eubacteria. J Bacteriol 174: 269–278

    CAS  PubMed  Google Scholar 

  • LaRivière JMW and Schmidt K (1992) Morphologically conspicuous sulfur-oxidizing eubacteria. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer KH (eds) The Prokaryotes, Second Ed, pp 3934–3947. Springer-Verlag, New York

    Google Scholar 

  • Le Faou A., Rajagopal BS, Daniels L and Fauque G (1990) Thiosulfate, polythionates and elemental sulfur assimilation and reduction in the bacterial world. FEMS Microbiol Rev 75: 351–382

    Google Scholar 

  • Leguijt T (1993) Photosynthetic Electron Transfer in Ectothiorhodospira. PhD thesis, University of Amsterdam

    Google Scholar 

  • Leguijt T, Engels PW, Crielaard W, Albracht SPJ and Hellingwerf KJ (1993) Abundance, subunit composition, redox properties and catalytic activity of the cytochrome bc1 complex from alkalophilic and halophilic, photosynthetic members of the family Ectothiorhodospiraceae. J Bacteriol 175: 1629–1636

    CAS  PubMed  Google Scholar 

  • Lu WP and Kelly DP (1984) Properties and role of sulphite: cytochrome c oxidoreductase purified from Thiobacillus versutus (A2). J Gen Microbiol 130: 1683–1692

    CAS  Google Scholar 

  • Lu WP and Kelly DP (1988a) Kinetic and energetic aspects of inorganic sulfur compound oxidation by Thiobacillus tepidarius. J Gen Microbiol 134: 865–876

    CAS  Google Scholar 

  • Lu WP and Kelly DP (1988b) Cellular location and partial purification of the ‘thiosulfate-oxidizing enzyme’ and ‘trithionate hydrolase’ from Thiobacillus tepidarius. J Gen Microbiol 134: 877–885

    CAS  Google Scholar 

  • Madigan MT and Brock TD (1975) Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous photosynthetic gliding bacterium. J Bacteriol 122: 782–784

    CAS  PubMed  Google Scholar 

  • McRee DE, Richardson DC, Richardson JS and Siegel LM (1986) The heme and Fe4S4 cluster in the crystallographic structure of Escherichia coli sulfite reductase. J Biol Chem 261: 10277–10281

    CAS  PubMed  Google Scholar 

  • Meulenberg R, Pronk JT, Hazeu W, Bos P and Kuenen JG (1992) Oxidation of reduced sulfur compounds by intact cells of Thiobacillus acidophilus. Arch Microbiol 157: 161–168

    CAS  Google Scholar 

  • Meyer TE and Cusanovich MA (1989) Structure, function and distribution of soluble bacterial redox proteins. Biochim Biophys Acta 973: 1–28

    Google Scholar 

  • Meyer TE, van Beeumen J, Holden HM, Rayment I, Bartsch RG and Cusanovich MA (1988) Kinetics of ligand binding, amino acid sequence, and crystallization of Chlorobium and Chromatium flavocytochrome c. In: Edmondson DE and McCormick D (eds) Flavins and Flavoproteins, pp 365–369. Walter de Gruyter, New York

    Google Scholar 

  • Meyer TE, Bartsch RG and Cusanovich MA (1991) Adduct formation between sulfite and the flavin of phototrophic bacterial flavocytochromes c. Kinetics of sequential bleach, recolor, and rebleach of flavin as a function of pH. Biochemistry 30: 8840–8845

    CAS  PubMed  Google Scholar 

  • Mittenhuber G, Sonomoto K, Egert M and Friedrich CG (1991) Identification of the DNA region responsible for sulfuroxidizing ability of Thiosphaera pantophora. J Bacteriol 173: 7340–7344

    CAS  PubMed  Google Scholar 

  • Nelson DC (1989) Physiology and biochemistry of filamentous sulfur bacteria. In: Schlegel HG and Bowien B (eds) Autotrophic Bacteria, pp 219–238. Science Tech Publishers, Madison, WI

    Google Scholar 

  • Neutzling O, Pfleiderer C and Trüper HG (1985) Dissimilatory sulphur metabolism in phototrophic ‘non-sulphur’ bacteria. J Gen Microbiol 131: 791–798

    CAS  Google Scholar 

  • Nicolson GL and Schmidt GL (1971) Structure of the Chromatium sulfur particle and its protein membrane. J Bacteriol 105: 1142–1148

    CAS  PubMed  Google Scholar 

  • Nixon A and Norris PR (1992) Autotrophic growth and inorganic sulfur compound oxidation by Sulfolobus sp. in chemostat culture. Arch Microbiol 157: 155–160

    CAS  Google Scholar 

  • Oh JK and Suzuki I (1980) Respiration in chemolithotrophs oxidizing sulfur compounds. In: Knowles CJ (ed) Diversity of Bacterial Respiratory Systems, Vol 2, pp 113–137. CRC Press, Boca Raton

    Google Scholar 

  • Okumura N, Shimada K and Matsuura K (1994) Photo-oxidation and rereduction of membrane-bound and soluble cytochrome c in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 41: 125–134

    Article  CAS  Google Scholar 

  • Oren A, Kessel M and Stackebrandt E (1989) Ectothiorhodospira marismortui sp. nov., an obligately anaerobic, moderately halophilic purple sulfur bacterium from a hypersaline sulfur spring on the shore of the Dead Sea. Arch Microbiol 151:524–529

    Article  CAS  Google Scholar 

  • Overmann J and Pfennig N (1989) Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152: 401–406

    Article  CAS  Google Scholar 

  • Overmann J and Pfennig N (1992) Continuous chemotrophic growth and respiration of Chromatiaceae species at low oxygen concentrations. Arch Microbiol 158: 59–67

    Article  CAS  Google Scholar 

  • Peck Jr HD and Bramlett RN (1982) Flavoproteins in sulfur metabolism. In: Massey V and Williams CH (eds) Flavins and Flavoproteins, pp 851–858. Elsevier, Amsterdam

    Google Scholar 

  • Pierson BK and Castenholz RW (1992) The family Chloroflexaceae. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer KH (eds) The Prokaryotes, Second Ed, pp 3754–3774. Springer-Verlag, New York

    Google Scholar 

  • Postgate JR (1984) The Sulfate Reducing Bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • Pronk JT, Meulenberg R, Hazeu W, Bos P and Kuenen JG (1990) Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75: 293–306

    CAS  Google Scholar 

  • Remsen CC (1978) Comparative subcellular architecture of photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 31–60. Plenum Press, New York

    Google Scholar 

  • Roy AB and Trudinger PA (1970) The Biochemistry of Inorganic Compounds of Sulfur. Cambridge University Press, Cambridge

    Google Scholar 

  • Saunders VA (1992) Genetics of the photosynthetic prokaryotes. In: Mann NH and Carr NG (eds) Photosynthetic Prokaryotes, pp 121–152. Plenum Press, New York

    Google Scholar 

  • Schedel M and Trüper HG (1979) Purification of Thiobacillus denitrificans siroheme sulfite reductase and investigation of some molecular and catalytic properties. Biochim Biophys Acta 568: 454–167

    CAS  PubMed  Google Scholar 

  • Schedel M and Trüper HG (1980) Anaerobic oxidation of thiosulfate and elemental sulfur in Thiobacillus denitrificans. Arch Microbiol 124: 205–210

    Article  CAS  Google Scholar 

  • Schedel M, Vanselow M and Trüper HG (1979) Siroheme sulfite reductase isolated from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties. Arch Microbiol 121: 29–36

    Article  CAS  Google Scholar 

  • Schiff JA and Fankhauser H (1981) Assimilatory sulfate reduction. In: Bothe H and Trebst A (eds) Biology of Inorganic Nitrogen and Sulfur, pp 153–168. Springer-Verlag, Berlin

    Google Scholar 

  • Schmidt GL, Nicolson GL and Kamen MD (1971) Composition of the sulfur particle of Chromatium vinosum strain D. J Bacteriol 105: 1137–1141

    CAS  PubMed  Google Scholar 

  • Schwenn JD and Biere M (1979) APS reductase activity in chromatophores of Chromatium vinosum strain D. FEMS Microbiol Lett 6: 19–22

    Article  CAS  Google Scholar 

  • Shahak Y, Arieli B, Padan E and Hauska G (1992a) Sulfide quinone reductase (SQR) activity in Chlorobium. FEBS Lett 299: 127–130

    Article  CAS  PubMed  Google Scholar 

  • Shahak Y, Arieli B, Hauska G, Herrmann I and Padan E (1992b) Isolation of sulfide-quinone reductase (SQR) from prokaryotes. Phyton 32: 133–137

    CAS  Google Scholar 

  • Shahak Y, Hauska G, Herrmann I, Arieli B, Taglicht D and Padan E (1992c) Sulfide-quinone reductase (SQR) drives anoxygenic photosynthesis in prokaryotes. In: Murata N (ed) Research in Photosynthesis, Vol 2, pp 483–486. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Shill DA and Wood PM (1985) Light-driven reduction ofoxygen as a method for studying electron transport in the green photosynthetic bacterium Chlorobium limicola. Arch Microbiol 143: 82–87

    Article  CAS  Google Scholar 

  • Siegel LM, Rueger DC, Barber MJ, Krueger RJ, Orme-Johnson NR and Orme-Johnson WH (1982) Escherichia coli sulfite reductase hemoprotein subunit. Prosthetic groups, catalytic parameters, and ligand complexes. J Biol Chem 257: 6343–6350

    CAS  PubMed  Google Scholar 

  • Smith AJ (1966) The role of tetrathionate in the oxidation of thiosulfate by Chromatium sp. strain D. J Gen Microbiol 42: 371–380

    CAS  PubMed  Google Scholar 

  • Smith AJ and Lascelles J (1966) Thiosulfate metabolism and rhodanese in Chromatium sp. strain D. J Gen Microbiol 42: 357–370

    CAS  PubMed  Google Scholar 

  • Stackebrandt E, Murray RGE and Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that included the ‘purple bacteria and their relatives’. Int J Syst Bacteriol 38: 321–325

    Google Scholar 

  • Steinmetz MA and Fischer U (1985) Thiosulfate sulfur transferases (rhodaneses) of Chlorobium vibrioforme f. thiosulfatophilum. Arch Microbiol 142: 253–258

    Article  CAS  Google Scholar 

  • Steinmetz MA, Trüper HG and Fischer U (1983) Cytochrome c-555 and iron-sulfur proteins of the non-thiosulfate-utilizing green sulfur bacterium Chlorobium vibrioforme. Arch Microbiol 135: 186–190

    Article  CAS  Google Scholar 

  • Steudel R (1984) Elemental sulfur and related homocyclic compounds and ions. In: Müller A and Krebs B (eds) Sulfur: Its Significance for Chemistry, for the Geo-, Bio-, and Cosmosphere and Technology, pp 3–37. Elsevier, Amsterdam

    Google Scholar 

  • Steudel R (1989) On the nature of the ‘elemental sulfur’ (S0) produced by sulfur-oxidizing bacteria — a model for S0 globules. In: Schlegel HG and Bowien B (eds) Autotrophic Bacteria, pp 289–303. Science Tech Publishers, Madison, WI

    Google Scholar 

  • Steudel R, Holdt G, Göbel T and Hazeu W (1987) Chromatographic separation of higher polythionates SnO62− (n=3–22) and their detection in cultures of Thiobacillus ferrooxidans; molecular composition of bacterial sulfur secretions. Angew Chem Int Ed Engl 26: 151–153

    Article  Google Scholar 

  • Steudel R, Göbel T and Holdt G (1988) The molecular composition of hydrophilic sulfur sols prepared by acid decomposition of thiosulfate. Z Naturforsch 43b: 203–218

    Google Scholar 

  • Steudel R, Holdt G, Visscher PT and van Gemerden H (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153: 432–437

    Article  CAS  Google Scholar 

  • Sugio T, Mizunashi W, Inagaki K and Tano T (1987) Purification and some properties of sulfur: ferric ion oxidoreductase from Thiobacillus ferrooxidans. J Bacteriol 169: 4916–4922

    CAS  PubMed  Google Scholar 

  • Sugio T, Katagiri T, Inagaki K and Tano T (1989) Actual substrate for elemental sulfur oxidation by sulfur: ferric ion oxidoreductase purified from Thiobacillus ferrooxidans. Biochim Biophys Acta 973: 250–256

    CAS  Google Scholar 

  • Takakuwa S (1992) Biochemical aspects of microbial oxidation of inorganic sulfur compounds. In: Oae S and Okuyama T (eds) Organic Sulfur Chemistry: Biochemical Aspects, pp 1–43. CRC Press, Boca Raton

    Google Scholar 

  • Tan J and Cowan JA (1991) Enzymatic redox chemistry: A proposed reaction pathway for the six-electron reduction of SO22− to S2− by the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough). Biochemistry 30: 8910–8917

    CAS  PubMed  Google Scholar 

  • Tan J, Corson GE, Chen YL, Garcia MC, Güner S and Knaff DB (1993) The ubiquinol: cytochrome c2lc oxidoreductase of Chromatium vinosum. Biochim Biophys Acta 1144: 69–76

    CAS  Google Scholar 

  • Thauer RK (1989) Energy metabolism of sulfate-reducing bacteria. In: Schlegel HG and Bowien B (eds) Autotrophic Bacteria, pp 397–413. Science Tech Publishers, Madison, WI

    Google Scholar 

  • Thauer RK, Jungermann K and Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180

    CAS  PubMed  Google Scholar 

  • Then J and Trüper HG (1984) Utilization of sulfide and elemental sulfur by Ectothiorhodospira halochloris. Arch Microbiol 139: 295–298

    Article  CAS  Google Scholar 

  • Tollin G, Meyer TE and Cusanovich MA (1982) Intramolecular electron transfer in Chlorobium thiosulfatophilum flavocytochrome c. Biochemistry 21: 3849–3856

    Article  CAS  PubMed  Google Scholar 

  • Trumpower BL (1990) Cytochrome bc1 complexes of microorganisms. Microbiol Rev 54: 101–129

    CAS  PubMed  Google Scholar 

  • Trüper HG (1984) Phototrophic bacteria and their sulfur metabolism. In: Müller A and Krebs B (eds) Sulfur, Its Significance for Chemistry, for the Geo-, Bio-, and Cosmosphere and Technology, pp 367–382, Elsevier, Amsterdam

    Google Scholar 

  • Trüper HG (1987) Phototrophic bacteria (an incoherent group of prokaryotes). A taxonomic versus phylogenetic survey. Microbiologia SEM 3: 71–89

    Google Scholar 

  • Trüper HG (1989) Physiology and biochemistry of phototrophic bacteria. In: Schlegel HG and Bowien B (eds) Autotrophic Bacteria, pp 267–281. Science Tech Publishers, Madison, WI

    Google Scholar 

  • Trüper HG and Fischer U (1982) Anaerobic oxidation of sulfur compounds as electron donors for bacterial photosynthesis. Phil Trans R Soc Lond B 298: 529–542

    Google Scholar 

  • Trüper HG and Imhoff JF (1992) The genera Rhodocyclus and Rubrivivax. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer KH (eds) The Prokaryotes, Second Ed, pp 2556–2561. Springer-Verlag, New York

    Google Scholar 

  • Trüper HG and Pfennig N (1966) Sulphur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek 32: 261–276

    Article  PubMed  Google Scholar 

  • Trüper HG and Rogers LA (1971) Purification and properties of adenylyl sulfate reductase from the phototrophic sulfur bacterium, Thiocapsa roseopersicina. J Bacteriol 108: 1112–1121

    Google Scholar 

  • Trüper HG, Lorenz C, Schedel M and Steinmetz M (1988) Metabolism of thiosulfate in Chlorobium. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 189–200. Plenum Press, New York

    Google Scholar 

  • Van Beeumen J, van Bun S, Meyer TE, Bartsch RG and Cusanovich MA (1990) Complete amino acid sequence of the cytochrome subunit and amino-terminal sequence of the flavin subunit of flavocytochrome c (sulfide dehydrogenase) from Chlorobium thiosulfatophilum. J Biol Chem 17: 9793–9799

    Google Scholar 

  • Van Beeumen JJ, Demol H, Samyn B, Bartsch RG, Meyer TE, Dolata MM and Cusanovich MA (1991) Covalent structure of the diheme cytochrome subunit and amino terminal sequence of the flavoprotein subunit of flavocytochrome c from Chromatium vinosum. J Biol Chem 266: 12921–12931

    PubMed  Google Scholar 

  • Van Gemerden H (1987) Competition between purple sulfur bacteria and green sulfur bacteria: Role of sulfide, sulfur and polysulfides. Acta Academiae Aboensis 47: 13–27

    Google Scholar 

  • Visscher PT and Taylor BF (1993) Organic thiols as organolithotrophic substrates for growth of phototrophic bacteria. Appl Environ Microbiol 59: 93–96

    CAS  PubMed  Google Scholar 

  • Visscher PT and Van Gemerden H (1991) Photoautotrophic growth of Thiocapsa roseopersicina on dimethyl sulfide. FEMS Microbiol Lett 81: 247–250

    Article  CAS  Google Scholar 

  • Visscher PT, Nijburg JW and van Gemerden H (1990) Polysulfide utilization by Thiocapsa roseopersicina. Arch Microbiol 155: 75–81

    Article  CAS  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW and Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156: 81–90

    Article  CAS  Google Scholar 

  • Wang S (1991) Purification and characterization of APS reductase from the photosynthetic bacterium Thiocapsa roseopersicina. MS Thesis, Arizona State University

    Google Scholar 

  • Wang X, Modak HV and Tabita FR (1993) Photolithoautotrophic growth and control of CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase-oxygenase. J Bacteriol 175: 7109–7114

    CAS  PubMed  Google Scholar 

  • Wermter U and Fischer U (1983) Cytochromes and anaerobic sulfide oxidation in the purple sulfur bacterium Chromatium warmingii. Z Naturforsch 38c: 960–967

    CAS  Google Scholar 

  • Westley AM and Westley J (1991) Biological sulfane sulfur. Anal Biochem 195: 63–67

    Article  CAS  PubMed  Google Scholar 

  • Westley J (1988) Mammalian cyanide detoxification with sulfane sulfur. In: Evered D and Harnett S (eds) Cyanide Compounds in Biology, pp 201–218. John Wiley and Sons, Chichester

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    CAS  PubMed  Google Scholar 

  • Wood PM (1988) Chemolithotrophy. In Anthony C. (ed) Bacterial Energy Transduction, pp 183–230. Academic Press, London

    Google Scholar 

  • Wynn RM, Kämpf C, Gaul DF, Choi WK, Shaw RW and Knaff DB (1985) The membrane-bound electron-transfer components of aerobically grown Chromatium vinosum. Biochim Biophys Acta 808: 85–93

    CAS  Google Scholar 

  • Yamanaka T and Kusai A (1976) The function and some molecular features of cytochrome c-553 derived from Chlorobium thiosulfatophilum. In: Singer TP (ed) Flavins and Flavoproteins, pp 292–301. Elsevier, Amsterdam

    Google Scholar 

  • Young LJ and Siegel LM (1988) Activated conformers of Escherichia coli sulfite reductase heme protein subunit. Biochemistry 27: 4991–4999

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Brune, D.C. (1995). Sulfur Compounds as Photosynthetic Electron Donors. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_39

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics