Skip to main content

Elements of Instability Theory for Environmental Flows

  • Chapter
Environmental Stratified Flows

Part of the book series: Topics in Environmental Fluid Mechanics ((EFMS,volume 3))

Abstract

An introduction to instability theory is provided, together with application of the theory to a number of idealized flows. Essential issues pertaining to the distinction between, and the application of, spatial and temporal approaches are given particular attention. The selection of specific examples is motivated by both their relevance to environmental contexts and their pedagogical value. Emphasis is placed primarily on the instability of density stratified shear flows, but the chapter closes with a brief consideration of the overturning (Rayleigh-Taylor) instability of statically-unstable interfaces when diffusion of the stratifying agent is suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baines, P.G. Topographic Effects in Stratified Flows. Cambridge University Press, 1995.

    Google Scholar 

  • Baines, P.G. & H. Mitsudera. On the mechanism of shear flow instabilities. J. Fluid Mech., 1994; 276: 327–342.

    Google Scholar 

  • Bogucki, D. & L.G. Redekopp. A mechanism for sediment resuspension by internal solitary waves. Geophys. Res. Lett., 1999; 26:1317–1320.

    Article  Google Scholar 

  • Caponi, E.A., M.Z. Caponi, P.G. Saffman & H.C. Yuen. A simple model for the effect of water shear on the generation of waves by wind. Proc. R. Soc. Lond., 1992; A438:95–101.

    Google Scholar 

  • Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press, 1961.

    Google Scholar 

  • Craik, A.D.D. Wave Interactions and Fluid Flows. Cambridge University Press, 1985.

    Google Scholar 

  • Drazin, P.G. & L.N. Howard. Hydrodynamic stability of parallel flow of inviscid fluid. Adv. Appl. Mech., 1966; 9:1–89.

    CAS  Google Scholar 

  • Drazin, P.G. Kelvin-Helmholtz instability of finite amplitude. J. Fluid Mech., 1970; 42:321–336.

    Google Scholar 

  • Drazin, P.G. & W.H. Reid. Hydrodynamic Stability, Cambridge University Press, 1981.

    Google Scholar 

  • Goldstein, S. On the stability of superposed streams of fluid of different densities. Proc. R. Soc. Lond., 1931; A132:524–548.

    Google Scholar 

  • Hazel, P. Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech., 1972; 51:39–61

    Google Scholar 

  • Hickernell, F.J. The evolution of large-horizontal-scale disturbances in marginally stable, inviscid, shear flows. I. Derivation of amplitude evolution equations. Stud. Appl. Math., 1983; 69:1–21.

    Google Scholar 

  • Holmboe, J. On the behaviour of symmetric waves in stratified shear layers. Geophys. Publ., 1962; 24:67–113.

    Google Scholar 

  • Howard, L.N. Note on a paper of John W. Miles. J. Fluid Mech., 1961; 10:509–512.

    Google Scholar 

  • Howard, L.N. & S.A. Maslowe. Stability of stratified shear flow. Boundary-layer Meteor., 1973; 4:511–523.

    Google Scholar 

  • Huerre, P. Spatio-temporal instabilities in closed and open flows. In Instabilities and Nonequilibrium Structures (E. Tirapagui & D. Villoroel, eds.). D. Reidell Publ. Co., Dordrecht, 1987.

    Google Scholar 

  • Huerre, P. & M. Rossi. Hydrodynamic instabilities in open flows. In Hydrodynamics and Nonlinear Instabilities (C. Godréche & P. Manneville, eds.). Cambridge University Press, 1998.

    Google Scholar 

  • Kelly, R.E. The onset and development of thermal convection in fully developed shear flows. Adv. Appl. Mech., 1994; 31:35–112.

    Google Scholar 

  • Koop, C.G. & F.K. Browand. Instability and turbulence in a stratified fluid with shear. J. Fluid Mech., 1979; 93:135–159.

    Google Scholar 

  • Lawrence, G.A., F.K. Browand & L.G. Redekopp. The stability of a sheared density interface. Phys. Fluids A., 1991; 3:2360–2370.

    Article  CAS  Google Scholar 

  • Lawrence, G.A., S.P. Haigh & Z. Zhu. In search of Holmboe’s instability. In Physical Processes in Lakes and Oceans (J. Imberger, ed.) AGU, Wash. D.C., 1998; 54:295–304.

    Google Scholar 

  • Leibovich, S. The form and dynamics of Langmuir circulations. Ann. Rev. Fluid. Mech., 1983; 15:391–427.

    Article  Google Scholar 

  • Lin, S.J. & R.T. Pierrhumbert. Absolute and convective instability of inviscid stratified shear flows. In Stratified Flows (Proc. 3rd International Symp. Strat. Flows, 1987, E.J. List & G.H. Jirka, eds.), Am. Soc. Civil Engineers., New York, 1990.

    Google Scholar 

  • Ortiz, S., T. Loiseleux & J.M. Chomaz. Absolute and convective instability in shear flows with an interface. Fifth International Symposium on Stratified Flows (G.A. Lawrence, R. Pieters & N. Yonemitsu, eds.) Univ. British Columbia, Vancouver, Canada. Also, Spatial Holmboe instability, submitted to Phys. Fluids, 2000.

    Google Scholar 

  • Pawlak, G. & L. Armi. Vortex dynamics in a spatially accelerating shear layer. J. Fluid Mech., 1998; 376:1–35.

    Article  CAS  Google Scholar 

  • Poliquen, O., J.M. Chomaz & P. Huerre. Propagating Holmboe waves at the interface between two immiscible fluids. J. Fluid Mech., 1994; 266:277–302.

    Google Scholar 

  • Rayleigh, Lord. The Theory of Sound. (2nd ed.), Macmillan, London; p.393, 1894.

    Google Scholar 

  • Smyth, W.D. & W.R. Peltier. The transition between Kelvin-Helmholtz and Holmboe instability: An investigation of the overreflection hypothesis. J. Atmos. Sci., 1989; 46:3698–3720.

    Article  Google Scholar 

  • Taylor, G.I. Effect of variation in density on the stability of superposed streams of fluids. Proc. R. Soc. Lond., 1931; A132:499–523. (Reprinted in Scientific Papers, IV:147–162).

    Google Scholar 

  • Thorpe, S.A. The stability of statically unstable layers. J. Fluid Mech., 1994a; 260:315–331.

    Google Scholar 

  • Thorpe, S.A. Statically unstable layers produced by overturning internal gravity waves. J. Fluid Mech., 1994b; 260:333–350.

    Google Scholar 

  • Turner, J.S. Buoyancy Effects in Fluids. Cambridge University Press, 1973.

    Google Scholar 

  • Wang, B.-ji & L.G. Redekopp. Long internal waves in shear flows: Topographic resonance and wave-induced global instability. To appear in Dyn. Atm. Oceans, 2000.

    Google Scholar 

  • Weissman, M.A. Nonlinear wave packets in the Kelvin-Helmholtz instability. Phil. Trans. R. Soc. Lond., 1979; A290:639–685.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Redekopp, L.G. (2003). Elements of Instability Theory for Environmental Flows. In: Grimshaw, R. (eds) Environmental Stratified Flows. Topics in Environmental Fluid Mechanics, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-306-48024-7_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48024-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7605-7

  • Online ISBN: 978-0-306-48024-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics