Skip to main content

On the Numerical Solution of Finite-Dimensional Variational Inequalities by an Interior Point Method

  • Chapter
Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 58))

Abstract

In this paper we give an Inexact Interior Point method to solve finitedimensional variational inequality problems for monotone functions and polyhedral sets. At each iteration the linear system that determines the search direction is solved inexactly, by using a linear iterative solver with an ad hoc stopping criterion. We discuss algorithmic issues concerning the solution of several subproblems arising in the formulation of the method, including: form of the linear systems to be solved, choice of the accuracy in the solution of these systems, strategy for satisfying centering and descent conditions. Not surprisingly, all these choices can affect the actual performance of the method, both in terms of reliability and efficiency. We describe the practical and theoretical considerations behind the decisions included in our implementation. Results of the numerical experimentation on several well known test problems are given. They confirm the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Andreani, A. Friedlander, J.M. Martinez, Solution of finitedimensional variational inequalities using nonsmooth optimization with simple bounds, J. Opt. Theory and Appl. 94 (1997), 635–657.

    MathSciNet  MATH  Google Scholar 

  2. S. Bellavia, Inexact Interior-point method, J. Opt. Theory and Appl. 96 (1998), 109–121.

    MathSciNet  MATH  Google Scholar 

  3. S. Bellavia, M. Macconi, An Inexact Interior-point method for monotone NCP, Optim. Methods and Software, Special Issue on Interior Point methods, 11/12 (1999), 211–241.

    MathSciNet  Google Scholar 

  4. J.F. Bonnans, C. Pola, R. Rébaï, Perturbed Path Following Interior Point Algorithms, Optim. Methods and Software, Special Issue on Interior Point methods, 11/12 (1999), 183–210.

    Google Scholar 

  5. C. Chen, O.L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Comput. Optim. and Appl. 5 (1996), 97–138.

    MathSciNet  MATH  Google Scholar 

  6. X. Chen. L. Qi, D. Sun, Global and superlinear convergence of the smoothing Newton methods and its application to general box constrained variational inequalities, Math, of Comput. 67 (1998), 519–540.

    MathSciNet  MATH  Google Scholar 

  7. R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982), 400–408.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. P. Dirkse, M. C. Ferris, MCPLIB: A Collection of Nonlinear Mixed Complementary Problems, Optimization Methods and Software 5 (1995), 319–345.

    Google Scholar 

  9. F. Facchinei, A. Fischer, C. Kanzow, Regularity properties of a semismooth reformulation of variational inequalities, SIAM J. Optim. 8 (1998), 850–869.

    MathSciNet  MATH  Google Scholar 

  10. F. Facchinei, A. Fischer, C. Kanzow, A semismooth newton method for variational inequalities: the case of box constraints, in: M.C. Ferris and J.S. Pang (eds.) Complementarity and variational problems: state of the art SIAM, Philadelphia (1997), 76–90.

    Google Scholar 

  11. M.C. Ferris. C. Kanzow, Complementarity and related problems: a survey, preprint 1998

    Google Scholar 

  12. M.C. Ferris, S. Lucidi, Nonmonotone stabilization methods for nonlinear equations, J. Opt. Theory and Appl. 81 (1994), 53–71.

    MathSciNet  MATH  Google Scholar 

  13. M.C. Ferris, J.S. Pang, Engineering and economic applications of complementarity problems, SIAM Rev. 39 (1997), 669–713.

    Article  MathSciNet  MATH  Google Scholar 

  14. R.W. Freund, F. Jarre, A QMR-based interior-point algorithm for solving linear programs, Math. Programming, Series B 76 (1997), 183–210.

    MathSciNet  Google Scholar 

  15. A. Friedlander, M.A. Gomes-Ruggiero, D.N. Kozakevich, J.M. Martinez, S.A. Santos, Solving nonlinear systems of equations by means quasi-Newton methods with a nonmonotone strategy, Optim. Methods and Software 8 (1997), 25–51.

    MathSciNet  MATH  Google Scholar 

  16. M.G. Gasparo, A nonmonotone hybrid method for nonlinear systems, Optim. Methods and Software 13 (2000), 79–92.

    MathSciNet  MATH  Google Scholar 

  17. P.E. Gill, W. Murray, M.H. Wright, Numerical Linear Algebra and Optimization, vol. 1, Addison-Wesley Pub. Company. 1991

    Google Scholar 

  18. L. Grippo, F. Lampariello. S. Lucidi, A nonmonotone line-search technique for newton’s method, SIAM J. Numer. Anal. 23 (1986), 707–716.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Han, D. Sun, Newton-type methods for variational inequalities,in: Ya-xiang Yuan (ed.), Advances in Nonlinear Programming, Kluwer Ac. Pub. (1998), 105–118.

    Google Scholar 

  20. P.T. Harker, Accelerating the convergence of the diagonalization and projection algorithms for Finite-dimensional Variational Inequalities, Math. Progr. 41 (1988), 29–59.

    Article  MathSciNet  MATH  Google Scholar 

  21. P.T. Harker, J.S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, Math. Progr. 48 (1990), 161–220.

    MathSciNet  MATH  Google Scholar 

  22. D. M. Himmelblau, Applied Nonlinear Programming, Mc.Graw-Hill, Inc., 1972

    Google Scholar 

  23. R.H.W. Hoppe, H.D. Mittelmann, A multigrid continuation strategy for parameter-dependent variational inequalities, J. Comput. and Appl. Math. 26 (1989), 35–46.

    Article  MathSciNet  MATH  Google Scholar 

  24. N.H. Josephy, Newton’s methods for generalized equations, Tech. Summary Report 1965, Math. res. center, Univ. of Wisconsin-Madison, Madison, Wisconsin. 1979

    Google Scholar 

  25. C. Kanzow, H. Pieper, Jacobian smoothing methods for nonlinear complementarity problems, SIAM J. Optim. 9 (1999), 342–373.

    Article  MathSciNet  MATH  Google Scholar 

  26. C.T. Kelley, Iterative methods for linear and nonlinear equations, Frontiers in Applied Mathematics 16, SIAM, 1995

    Google Scholar 

  27. M. Kojima, T. Noma, A. Yoshise, Global convergence in infeasible interior point algorithms, Math. Progr. 65 (1994), 43–72.

    Article  MathSciNet  Google Scholar 

  28. L. Mathiesen, An algorithm based on a sequence of linear complementarity problems applied to a Walrasian Equilibrium model: an example, Math Progr. 37 (1987), 1–18.

    MathSciNet  MATH  Google Scholar 

  29. J.J. More’, M.Y. Cosnard, Numerical solution of nonlinear equations, ACM Trans. on Math. Software 5 (1979), 64–85.

    Google Scholar 

  30. S. Pieraccini, A hybrid Newton-type method for a class of semismooth equations, preprint 1999

    Google Scholar 

  31. L. Portugal, M. Resende, G. Veiga, J. Judice, A truncated primal infeasible dual feasible network interior point method, Networks 35 (2000), 91–108.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Ralph, S. Wright, Superlinear convergence of an Interior-Point Method for monotone variational inequalities, Complementarity and Variational Problems: State of the Art. SIAM Publications (1997), 345–385.

    Google Scholar 

  33. Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 6 (1985), 856–869.

    MathSciNet  Google Scholar 

  34. D. Sun, R.S. Womersley, A new unconstrained differentiable merit function for box constrained variational inequality problems and a damped Gauss-newton method, SIAM J. Optim. 9 (1999), 388–413.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Sun, G. Zhao, Global linear and local quadratic convergence of a long-step adaptive-mode interior-point method for some monotone variational inequality problems, SIAM J. Optim. 8 (1998), 123–139.

    MathSciNet  MATH  Google Scholar 

  36. B. Xiao, P.T. Harker, A nonsmooth Newton method for variational inequalities, I: theory, Math. Progr. 65 (1994), 151–194.

    MathSciNet  Google Scholar 

  37. B. Xiao, P.T. Harker, A nonsmooth Newton method for variational inequalities, II: numerical results, Math. Progr. 65 (1994), 195–216.

    MathSciNet  Google Scholar 

  38. S. Wright, D. Ralph, A Superlinear Infeasible-Interior Point Algorithm for Monotone Complementarity Problems, Mathematics of Operation Research 21 (1996), 815–838.

    Article  MathSciNet  MATH  Google Scholar 

  39. Y. Ye, Interior-point algorithms: Theory and analysis, John Wiley and Sons, New York, NY, 1997

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bellavia, S., Gasparo, M.G. (2001). On the Numerical Solution of Finite-Dimensional Variational Inequalities by an Interior Point Method. In: Giannessi, F., Maugeri, A., Pardalos, P.M. (eds) Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Nonconvex Optimization and Its Applications, vol 58. Springer, Boston, MA. https://doi.org/10.1007/0-306-48026-3_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48026-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-0161-1

  • Online ISBN: 978-0-306-48026-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics