Skip to main content

Relationships Between Antioxidant Metabolism and Carotenoids in the Regulation of Photosynthesis

  • Chapter
The Photochemistry of Carotenoids

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 8))

Summary

The large driving forces produced in photosynthesis require precise control and regulation to prevent potentially destructive side reactions involving active oxygen species that damage pigments and proteins. Oxygen can be activated either by energy transfer, yielding singlet oxygen, or by reduction, yielding superoxide or hydrogen peroxide. At Photosystem I, the lifetime of the excited chlorophyll singlet state within the antenna pigment bed is short and little threat is posed by formation of highly reactive singlet oxygen. The situation is completely different in Photosystem II. Here, the lifetime of singlet chlorophyll is sufficiently long to allow significant formation of chlorophyll triplet states able to transfer energy to ground state triplet oxygen, generating singlet oxygen. Carotenoids intervene to control these processes in at least two important ways. First, pigments such as β-carotene are capable of directly quenching both triplet chlorophyll and singlet oxygen states (the so-called triplet valve mechanism). Second, the xanthophyll cycle is involved in lowering the yield of triplet chlorophyll formation by pre-emptive quenching of excited singlet state chlorophyll, a mechanism that can have a high quantum yield value for energy dissipation. The chief difference between these two mechanisms is that the xanthophyll cycle is inducible and subject to regulation, whereas the triplet valve pathway is constitutive and unregulated. Although formation of singlet oxygen must be avoided or controlled, chloroplasts have exploited the potential of oxygen chemistry to drive and regulate metabolism while minimizing the deleterious effects of uncontrolled interactions with oxygen. Hence, while the potential of the chloroplast as a source of oxidative stress is large, in reality this organelle offers minimal risk because of pre-emptive regulation and effective defense. The production of superoxide and hydrogen peroxide by the thylakoid membranes is limited by efficient control of electron transport. This regulation limits the potential for oxidative damage and prevents high rates of electron transport to oxygen. Effective antioxidant defense ensrures rapid elimination of active forms of oxygen further preventing oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A1:

secondary electron acceptor in rcI

AA:

ascorbic acid

AOS:

active oxygen species

APX:

ascorbate peroxidase

Ci:

intracellular CO2 concentrations

1Chl*:

chlorophyll singlet state

DHA:

dehydroascorbate

DHAR:

dehydroascorbate reductase

φ :

yield of photochemistry by rcII withoxidized QA

F:

Faraday constant

Fd:

ferredoxin

Fm:

relative yield or intensity of chlorophyll fluorescence whenall QA is reduced in the dark-adapted state

F′m:

as Fm but under conditions of irradiation

FNR:

ferredoxin-NADP reductase

FO:

relative yield or intensity of fluorescence when all QA is oxidized

Fν:

relative change in fluorescence yield or intensity produced by completely reducing the QA pool in the dark-adapted state

Fν:

as Fν but under conditions of irradiation

FÇ:

third electron acceptor in rcI

FÇ/B:

fourth electron acceptor in rcI

GR:

glutathione reductase

GSH:

reduced glutathione

GSSG:

glutathione disulfide

JPSI:

index of PS I electron transport, the product of φPS I and irradiance

LHCII:

light-harvesting chlorophyll a/b-binding protein associated with PS II

MDHA:

monodehydroascorbate

MDHAR:

monodehydroascorbate reductase

NPQ:

non-photochemical quenching of variable chlorophyll a fluorescence

P680:

chlorophyll pair that forms the primary electron donor in the reaction center of PS II

P700:

chlorophyll pair that forms the primary electron donor in the reaction center of PS I

PQ:

plastoquinone

PS:

photosystem

φPS I:

quantum yield for PS I electron transport

φPS II:

quantum yield for PS II electron transport

QA:

primary stable electron acceptor toPS II

QB:

terminal electron acceptor of the PS II reaction center

qQ:

probability that an exciton in PS II will encounter a rcII with anoxidized QA

R:

universal gas constant (8.31 JK−1mol−1)

rcI:

reaction center of PS I

rcII:

reaction center of PS II

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

RuBP:

ribulose-1,5-bisphosphate

SOD:

superoxide dismutase

T:

absolute temperature

ΔμH+:

transthylakoid proton potential

VDE:

violaxanthin deepoxidase

References

  • Alfonso M, Montoya G, Cases R, Rodriguez R and Picorel R (1994) Core antenna complexes, CP43 and CP47, of higher plant Photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry 33: 10494–10500

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (1975) Oxygen reduction and optimum production of ATP in photosynthesis. Nature 256: 599–600

    Article  CAS  Google Scholar 

  • Allen JF (1977) Oxygen–a physiological electron acceptor in photosynthesis? Curr Adv Plant Sci 29: 459–468

    Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335

    CAS  PubMed  Google Scholar 

  • Ananyev G, Renger G, Wacker U and Klimov V (1994) The photoproduction of superoxide radicals and the superoxide dismutase activity of Photosystem II. The possible involvement of cytochrome b559. Photosynth Res 41: 327–338

    Article  CAS  Google Scholar 

  • Anderson JW, Foyer CH and Walker DA (1983a) Light-dependent reduction of hydrogen peroxide by intact spinach chloroplasts. Biochim Biophys Acta 724: 69–74

    CAS  Google Scholar 

  • Anderson JW, Foyer CH and Walker DA (1983b) Light-dependent reduction of dehydroascorbate and uptake of exogenous ascorbate by spinach chloroplasts. Planta 158: 442–450

    Article  CAS  Google Scholar 

  • Andersson B and Barber J (1996) Mechanisms of photodamage and protein degradation during photoinhibition of Photosystem II. In: Baker NR (ed) Photosynthesis and the Environment, pp 101–121. Kluwer, Dordrecht

    Google Scholar 

  • Arnon DI and Chain RK (1975) Regulation of ferredoxin-catalysed photosynthetic phosphorylations. Proc Natl Acad Sci USA 72: 4961–4965

    CAS  PubMed  Google Scholar 

  • Aro E-M, McCaffery S and Anderson JM (1993a) Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol 103: 835–843

    CAS  PubMed  Google Scholar 

  • Aro E-M, Virgin I and Andersson B (1993b) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    CAS  PubMed  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase–a hydrogen peroxide scavenging enzyme in plants. Physiol Plant 85: 235–241

    Article  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, pp 77–104. CRC Press, Baton Rouge

    Google Scholar 

  • Asada K (1996) Radical production and scavenging in the chloroplasts. In: Baker NR (ed) Photosynthesis and the Environment, pp 128–150. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Asada K, Urano M and Takaliashi M (1973) Subcellular location of superoxide dismutase in spinach leaves and preparation and properties of crystalline spinach superoxide dismutase. Eur J Biochem 36: 257–266

    Article  CAS  PubMed  Google Scholar 

  • Asada K, Kiso K and Yoshikawa K (1974) Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem 247: 2175–2181

    Google Scholar 

  • Badger MR (1985) Photosynthetic oxygen exchange. Ann Rev Plant Physiol 36: 27–53

    CAS  Google Scholar 

  • Baker NR and Bowyer JR (eds) (1994) Photoinhibition of photosynthesis. From molecular mechanisms to the field. Bios, Oxford

    Google Scholar 

  • Barber J and Andersson B (1992) Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem Sci 17: 61–66

    Article  CAS  PubMed  Google Scholar 

  • Barzda V, Peterman EJG, Van Grondelle R and Van Amerongen H (1998) The influence of aggregation on triplet formation in light-harvesting chlorophyll a/b pigment-protein complex II of green plants. Biochemistry 37: 546–551

    Article  CAS  PubMed  Google Scholar 

  • Beck E, Burkert A and Hofmann M (1983) Uptake of L-ascorbate by intact chloroplasts. Plant Physiol 73: 41–45

    CAS  Google Scholar 

  • Bendall DS (1982) Photosynthetic cytochromes of oxygenic organisms. Biochim Biophys Acta 683: 119–152

    CAS  Google Scholar 

  • Bendall DS and Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta 1229: 23–38

    Google Scholar 

  • Berkner LV and Marshall LC (1965) On the origin and rise of oxygen concentration in the earth’s atmosphere. J Atmos Sci 22: 225–261

    Article  CAS  Google Scholar 

  • Bilger W and Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25: 173–185

    CAS  Google Scholar 

  • Bratt CE, Arvidsson P-O, Carlsson M and Akerlund H-E (1995) Regulation of violaxanthin de-epoxidase by pH and ascorbate concentration. Photosynth Res 45: 169–175

    Article  CAS  Google Scholar 

  • Buettner GR and Jurkiewicz BA (1996) Chemistry and biochemistry of ascorbic acid. In: Cadenas E, Packer L (eds) Handbook of Antioxidants, pp 91–115. Marcel Dekker Inc., New York

    Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Ann Rev Biochem 58: 79–110

    CAS  PubMed  Google Scholar 

  • Chazdon RL and Pearcy RW (1991) The importance of sunflecks for forest understory plants. BioScience 41: 760–766

    Google Scholar 

  • Cornic G and Briantais J-M (1991) Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta 183: 178–184

    Article  CAS  Google Scholar 

  • Crofts AR and Yerkes CT (1994) A molecular mechanism for quenching. FEBS Lett 352: 265–270

    Article  CAS  PubMed  Google Scholar 

  • Danon A and Mayfield SP (1994) Light-regulated translation of chloroplast messenger RNAs through redox potential. Science 266: 1717–1719

    CAS  PubMed  Google Scholar 

  • Deisenhofer J and Michel H (1993) Three-dimensional structure of the photosynthetic reaction centre from Rhodopseudomonas viridis. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, Vol 2, pp 541–558. Academic Press, London

    Google Scholar 

  • De las Rivas J, Telfer A and Barber J (1993) 2-coupled β-carotene molecules protect p860 from photodamage in isolated Photosystem II reaction centers. Biochim Biophys Acta 1142: 155–164

    Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020: 1–24

    CAS  Google Scholar 

  • DiMagno L, Chan C-K, Jia Y, Lang MJ, Newman JR, Mets L, Fleming GR and Haselkorn R (1995) Energy transfer and trapping in Photosystem I reaction centers from cyanobacteria. Proc Natl Acad Sci USA 92: 2715–2719

    Google Scholar 

  • Egneus H, Heber U, Matthiesen U and Kirk M (1975) Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide. Biochim Biophys Acta 408: 252–268

    CAS  PubMed  Google Scholar 

  • Elstner EF, Saran M, Bors W and Lengfelder E (1978) Oxygen activation in isolated chloroplasts. Mechanism offerredoxin-dependent ethylene formation from methionine. Eur J Biochem 89: 61–66

    Article  CAS  PubMed  Google Scholar 

  • Escoubas J-M, Lomas M, LaRoche J and Falkowski PG (1995) Light intensity regulates cab gene expression via the redox state of the plastoquinone pool in the green alga Dunaliella tertiolecta. Proc Natl Acad Sci USA 92: 10237–10241

    CAS  PubMed  Google Scholar 

  • Fine PL and Frisch WD (1990) The mechanism of H2O2 production by the S2 state of the oxygen-evolving complex. In: Baltscheffsky M (ed) Current Research in Photosynthesis I. pp 905–908, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Foyer CH (1993) Interactions between electron transport and carbon assimilation in leaves: Co-ordination of activities and control. In: Abrol Y, Mohanty P, Govindjee (eds), Photosynthesis. Photoreactions to Plant Productivity, pp 199–224. Oxford and IBH publishing Co. PVT Ltd, New Delhi

    Google Scholar 

  • Foyer CH and Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux PM (eds) Causes of Photo-oxidative Stress and Amelioration of Defense Systems in Plants, pp 1–42. CRC Press, Boca Raton

    Google Scholar 

  • Foyer CH and Harbinson J (1997) The photosynthetic electron transport system: efficiency and control. In: Foyer CH, Quick WP (eds), A molecular approach to primary metabolism in higher plants, pp 3–39. Taylor and Francis, London, UK

    Google Scholar 

  • Foyer CH and Lelandais M (1995) Ascorbate transport into protoplasts, chloroplasts and thylakoid membranes of pea leaves. In: Mathis P (ed), Photosynthesis: From light to Biosphere, Vol V, pp 511–514. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Foyer CH and Lelandais M (1996) A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells. J Plant Physiol 148: 391–398

    CAS  Google Scholar 

  • Foyer CH, Rowell J and Walker D (1983) Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157: 239–244

    Article  CAS  Google Scholar 

  • Foyer CH, Furbank R, Harbinson J and Horton P (1990) The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynth Res 25: 83–100

    Article  CAS  Google Scholar 

  • Foyer CH, Lelandais M and Harbinson J (1992). Control of the quantum efficiencies of Photosystems I and II, electron flow and enzyme activation following dark-to-light transitions in pea leaves. Plant Physiol 99: 979–986

    CAS  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D and Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41: 389–395

    Article  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 64: 97–112

    CAS  PubMed  Google Scholar 

  • Genty B and Harbinson J (1996) The regulation of light utilization for photosynthetic electron transport. In: Baker NR (ed) Photosynthesis and the Environment, pp 67–99. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Genty B, Goulas Y, Dimon B, Peltier JM and Moya I (1992) Modulation efficiency of primary conversion in leaves, mechanisms involved in PS II. In: Murata N (ed) Research in Photosynthesis, Vol 4, pp 603–610. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Giardi MT, Masojídek J and Godde D (1997) Effects of abiotic stresses on the turnover of the D1 reaction centre II protein. Physiol Plant 101: 635–642

    Article  CAS  Google Scholar 

  • Gillham DJ and Dodge AD (1987) Chloroplast superoxide and hydrogen peroxide scavenging systems from pea leaves: Seasonal variations. Plant Sci 50: 105–109

    Article  CAS  Google Scholar 

  • Gilmore AM, Hazlett TL and Govindjee (1995) Xanthophyll cycle-dependent quenching of Photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime. Proc Natl Acad Sci USA 92: 273–2277

    Google Scholar 

  • Gilmore AM, Hazlett TL, Debrunner PG and Govindjee (1996a) Photosystem II chlorophyll a fluorescence lifetimes and intensity are independent of the antenna size differences between barley wild-type and chlorina mutants: Photochemical quenching and xanthophyll cycle dependent non-photochemical quencing of fluorescence. Photosynth Res 48: 171–187

    Article  CAS  Google Scholar 

  • Gilmore AM, Hazlett TL, Debrunner PG and Govindjee (1996b) Comparative time-resolved Photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle dependent energy dissipation. Photoschem Photobiol 64: 552–563

    CAS  Google Scholar 

  • Gilmore AM, Shinkarev VP, Hazlett TL and Govindjee (1998) Quantitative analysis of the effects of intrathylakoid pH and the xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids. Biochemistry 37: 13582–13593

    Article  CAS  PubMed  Google Scholar 

  • Goetze DC and Carpentier R (1994) Ferredoxin NADP+ reductase is the site of oxygen reduction in pseudocyclic electron transport. Can J Bot 72: 256–260

    CAS  Google Scholar 

  • Grace S and Logan BA (1996) Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaves evergreen species. Plant Physiol 112: 1631–1640

    CAS  PubMed  Google Scholar 

  • Grace S, Pace R and Wydrzynski T (1995) Formation and decay of monodehydroascorbate radicals in illuminated thylakoids as determined by ERR spectroscopy. Biochim Biophys Acta 1229: 155–165

    Google Scholar 

  • Groden D and Beck E (1979) H2O2 destruction by ascorbate-dependent systems from chloroplasts. Biochim Biophys Acta 546: 426–435

    CAS  PubMed  Google Scholar 

  • Groot M-L, Peterman EJG, Van Stokkum IHM, Dekker JP and Van Grondelle R (1995) Triplet and fluorescing states of the CP47 antenna complex of Photosystem II studied as a function of temperature. Biophys J 68: 281–290

    CAS  PubMed  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35: 659–683

    Article  CAS  Google Scholar 

  • Hager A (1969) Lichtbedingte pH-erniederigung in einem chloroplasten-kompartiment als Ursache der enzymatischen Violaxanthin → Zeaxanthin-Umwandlung, Beziehungen zur Photophosphorylierung. Planta 89: 224–243

    Article  CAS  Google Scholar 

  • Hager A and Holocher K (1994) Localisation of the xanthophyll cycle enzyme violaxamthin deepoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192: 581–589

    Article  CAS  Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chemistry and Physics of Lipids 44: 327–340

    Article  CAS  Google Scholar 

  • Harbinson J (1994) The responses of thylakoid electron transport and light utilisation efficiency to sink limitation of electron transport. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis, pp 273–295. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Harbinson J and Hedley CL (1993) Changes in P-700 oxidation during the early stages of the induction of photosynthesis. Plant Physiol 103: 649–660

    CAS  PubMed  Google Scholar 

  • Hastings G, Kleinherenbrink FAM, Lin S and Blankenship RE (1994) Time-resolved fluorescence and absorption spectroscopy of Photosystem I. Biochemistry 33: 3185–3192

    CAS  PubMed  Google Scholar 

  • Heber U, Egneus H, Hanch Jensen M and Köster S (1978) Regulation of photosynthetic electron transport and photophosphorylation in intact chloroplasts and leaves of Spinacia oleracea L. Planta 143: 41–49

    Article  CAS  Google Scholar 

  • Hecks B, Wulf K, Breton J, Leibl W and Trissl HW (1994) Primary charge separation in Photosystem I: A two-step electrogenic charge separation connected with P +700 A 0 and P +700 A 1 formation. Biochemistry 33: 8619–8624

    Article  CAS  PubMed  Google Scholar 

  • Henkow L, Strid Å, Berglund T, Rydstöm J and Ohlsson AB (1996) Alteration of gene expression in Pisum sativum tissue cultures caused by the free radical-generatingagent 2,2′-azobis (2-amidinopropane) dihydrochloride. Physiol Plant 96: 6–12

    Article  CAS  Google Scholar 

  • Hideg E, Spetea C and Vass I (1994) Singlet oxygen and free radical production during acceptor-and donor-side-induced photoinhibition. Studies with spin trapping ERR spectroscopy. Biochim Biophys Acta 1186: 143–152

    CAS  Google Scholar 

  • Hill R and Rich PR (1983) A physical interpretation for the natural photosynthetic process. Proc Natl Acad Sci USA 80: 978–982

    CAS  Google Scholar 

  • Hope AB, Liggins J and Matthews DB (1988) The kinetics of reactions in and near the cytochrome b/f complex of chloroplast thylakoids. I. Proton deposition. Aust J Plant Physiol 15: 695–703

    CAS  Google Scholar 

  • Hormann H, Neubauer C, Asada K and Schreiber U (1993) Intact chloroplasts display pH 5 optimum of O2-reduction in the absence of methyl viologen. Indirect evidence for a regulatory role of superoxide protonation. Photosynth Res 37: 69–89

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–84.

    Article  CAS  PubMed  Google Scholar 

  • Hundal T, Forsmark-Andrée P, Ernster L and Andersson B (1995) Antioxidant activity of reduced plastoquinone in chloroplast thylakoid membranes. Arch Biochem Biophys 324: 117–122

    Article  CAS  PubMed  Google Scholar 

  • Huner NPA, Maxwell DP, Gray GR, Savitch LV, Krol M, Ivanov AG and Falk S (1996) Sensing environmental temperature change through imbalances between energy supply and energy consumption: Redox state of Photosystem II. Physiol Plant 98: 358–364

    Article  CAS  Google Scholar 

  • Ikegami I (1976) Fluorescence changes related in the primary photochemical reaction in the P700 enriched particles isolated from spinach chloroplasts. Biochim Biophys Acta 449: 245–258

    CAS  PubMed  Google Scholar 

  • Jakob B and Heber U (1996) Photoproduction and detoxification of hydroxyl radicals in chloroplasts and leaves in relation to photoinactivation of Photosystems I and II. Plant Cell Physiol 37: 629–635

    CAS  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1–19

    CAS  PubMed  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Crerssen G and Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidases genes in Arabidopsis during excess light stress. Plant Cell 9: 627–640

    Article  CAS  PubMed  Google Scholar 

  • Khamis S, Lamaze T, Lemoine Y and Foyer C (1990) Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation. Plant Physiol 94: 1436–1443

    CAS  Google Scholar 

  • Khan AU and Kasha M (1994) Singlet molecular oxygen in the Haber-Weiss reaction. Proc Natl Acad Ser USA 91: 12365–12367

    CAS  Google Scholar 

  • Kleima FJ, Gradinaru CC, Calkoen F, Van Stokkum IHM, Van Grondelle R and Van Amerongen H (1997) Energy transfer in LHCII monomers at 77K studied by sub-picosecond transient absorption spectroscopy. Biochemistry 36: 15262–15268

    Article  CAS  PubMed  Google Scholar 

  • Kleinherenbrink FAM, Hastings G, Wittmershaus BP and Blankenship RE (1994) Delayed fluorescence from Fe-S type photosynthetic reaction centers at low redox potential. Biochemistry 33: 3096–3105

    Article  CAS  PubMed  Google Scholar 

  • Klughammer C and Schreiber U (1993) An improved method, using saturating light pulses, for the determination of Photosystem I quantum yield via P-700+-absorbance changes at 830 nm. Planta 192: 261–268

    Google Scholar 

  • Koyama Y (1991) Structures and functions of carotenoids in photosynthetic systems. J Photochem Photobiol B Biol 9: 265–280

    CAS  Google Scholar 

  • Kramer DM and Crofts AR (1993) the concerted reduction of the high and low potential chains of the bf complex by plastoquinol. Biochim Biophys Acta 1183: 72–84

    CAS  Google Scholar 

  • Kramer H and Mathis P (1980) Quantum yield and rate of formation of the carotenoid triplet state in photosynthetic structures. Biochim Biophys Acta 593: 319–329

    CAS  PubMed  Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    Article  CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Kyle DJ (1987) The biochemical basis for photoinhibition of Photosystem II. In: Kyle DJ, Osmond CB and Arntzen CJ (eds) Photoinhibition. Photoinhibition, Topics of Photosynthesis, pp 197–226. Elsevier, Scientific Press, Amsterdam

    Google Scholar 

  • Kyle DJ, Ohad I and Arntzen CJ (1985) Molecular mechanisms of compensation to light stress in chloroplast membranes. In: Key JL and Kosuge T (eds) Cellular and Molecular Biology of Plant Stress, pp 51–69. Liss, New York

    Google Scholar 

  • Laisk A, Oja V, Rasulov B, Eichelmann H and Sumberg A (1997) Quantum yields and rate constants of photochemical and non-photochemical excitation quenching—Experiment and model. Plant Physiol 115: 803–815

    CAS  PubMed  Google Scholar 

  • Lancaster CRD and Michel H (1996) Three-dimensional structures of photosynthetic reaction centers. Photosynth Res 48: 65–74

    Article  CAS  Google Scholar 

  • Logan BA, Grace SC, Adams WW III and Demmig-Adams B (1998a) Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia 116: 9–17

    Article  Google Scholar 

  • Logan BA, Demmig-Adams B, Adams WW III and Grace SC (1998b) Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L.and Vinca major L. acclimated to four growth PPFDs in the field. J Exp Bot 49: 1869–1879

    CAS  Google Scholar 

  • Macpherson AN, Telfer A, Barber J and Truscott TG (1993) Direct detection of singlet oxygen from isolated Photosystem II reaction centres. Biochim Biophys Acta 1143: 301–309

    CAS  Google Scholar 

  • Marsho TV, Behrens PW and Radmer RJ (1979) Photosynthetic oxygen reduction in isolated intact chloroplasts and cells from spinach. Plant Physiol 64: 656–659

    CAS  Google Scholar 

  • Mattoo AK, Marder JB and Edelman M (1989) Dynamics of the Photosystem II reaction center. Cell 56: 241–246

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DP, Laudenbach DE and Huner NPA (1995) Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol 109: 787–795

    CAS  PubMed  Google Scholar 

  • McCormac DJ, Bruce D and Greenberg BM (1994) State transitions, light-harvesting antenna phosphorylation and light-harvesting antenna migration in vivo in the higher plant Spirodela oligorrhiza. Biochim Biophys Acta Bioener 1187: 301–312

    CAS  Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts. I. Mechanisms of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33: 65–77

    Article  CAS  Google Scholar 

  • Mehler AH and Brown AH (1952) Studies on reactions of illuminated chloroplasts. III. Simultaneous photoproduction and consumption of oxygen studied with oxygen isotopes. Arch Biochem Biophys 38: 365–370

    Article  CAS  PubMed  Google Scholar 

  • Melis A (1996) Excitation energy transfer: functional and dynamic aspects of Lhc (cab) proteins. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis, pp 523–538. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Miller NJ, Sampson J, Candeias LP, Bramley PM and Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384: 240–242

    Article  CAS  PubMed  Google Scholar 

  • Mishra NP and Fridovich I (1971) The generation of superoxide radical during the autooxidation of ferredoxin. J Biol Chem 246: 6886–6890

    Google Scholar 

  • Mishra NP, Mishra RK and Singhal GS (1993) Involvement of active oxygen species in photoinhibition of Photosystem II: protection of photosynthetic efficiency and inhibition of lipid peroxidation by superoxide dismutase and catalase. J Photochem Photobiol B Biol 19: 19–24

    CAS  Google Scholar 

  • Miyake C and Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monode hydroascorbate radicals in thylakoids. Plant Cell Physiol 33: 541–553

    CAS  Google Scholar 

  • Miyake C and Asada K (1994) Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids. Plant Cell Physiol 35: 539–549

    CAS  Google Scholar 

  • Miyake C, Schreiber U, Hormann H, Sano S and Asada K (1996) Monodehydroascorbateradical reductase-dependent photoreduction of oxygen in chloroplast thylakoids. Plant Cell Physiol 37: s284

    Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M and Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38: 274–281

    CAS  Google Scholar 

  • Neubauer C and Schreiber U (1989) Photochemical and non-photochemical quenching of chlorophyll fluorescence induced by hydrogen peroxide. Z Naturforsch 44C: 262–270

    Google Scholar 

  • Neubauer C and Yamamoto HY (1992) Mehler-peroxidase reduction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. Plant Physiol 99: 1354–1361

    CAS  Google Scholar 

  • Nishio JN and Whitmarsh J (1993) Dissipation of the proton electrochemical potential in intact chloroplasts. II. The pH gradient monitored by cytochrome f reduction kinetics. Plant Physiol 101: 89–96

    CAS  PubMed  Google Scholar 

  • Nitsch C, Braslavsky SE and Schatz GH (1988) Laser-induced optoacoustic calorimetry of primary processes in isolated Photosystem I and Photosystem II particles. Biochim Biophys Acta 934: 201–212

    CAS  Google Scholar 

  • Noctor G, Rees D, Young A and Horton P (1991) The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence and trans-thylakoid pH gradient in isolated chloroplasts. Biochim Biophys Acta 1057: 320–330

    CAS  Google Scholar 

  • Nuijs AM, Shuvalov VA, van Gorkom HJ, Plijter JJ and Duysens LNM (1986) Picosecond absorbance difference spectroscopy on the primary reactions and the antenna excitedstates in Photosystem I particles. Biochim Biophys Acta 850: 310–318

    CAS  Google Scholar 

  • Palsson LO, Flemming C, Gobets B, Grondelle R van, Dekker JP and Schlodder E (1998) Energy transfer and charge separation in Photosystem I: P700 oxidation upon selective excitation of the long wavelength antenna chlorophylls of Synechococcus elongatus. Biophys J 74: 2611–2622

    CAS  PubMed  Google Scholar 

  • Pearson CK, Wilson SB, Schaffer R and Ross AW (1993) NAD turnover and utilisation of metabolites for RNA synthesis in a reaction sensing the redox state of the cytochrome b 6 /f complex in isolated chloroplasts. Eur J Biochem 218: 397–404

    Article  CAS  PubMed  Google Scholar 

  • Peterman EJG, Dukker FM and van Amerongen H (1995) Chlorophyll a and carotenoid triple states in light-harvesting complex II of higher plants. Biophys J 69: 2670–2678

    CAS  PubMed  Google Scholar 

  • Peterson RB (1989) Partitioning of noncyclic photosynthetic electron transport to O2-dependent dissipative processes as probed by fluorescence and CO2. Plant Physiol 90: 1322–1328

    CAS  Google Scholar 

  • Pfundel E and Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 42: 89–109

    Google Scholar 

  • Polle A (1996) Mehler Reaction: Friend or Foe in Photosynthesis. Bot Acta 109: 84–89

    CAS  Google Scholar 

  • Polm M and Brettel K (1998) Secondary pair charge recombination in Photosystem I under strongly reducing conditions: Temperature dependence and suggested mechanism. Biophys J 74: 3173–3181

    CAS  PubMed  Google Scholar 

  • Rich P (1982) A physicochemical model of quinone-cytochrome bc complex electron transfers. In: Trumpower BL (ed) Function of Quinones in Energy Conserving Systems, pp 73–86. Academic Press, New York

    Google Scholar 

  • Robinson JM (1988) Does O2 photoreduction occur within chloroplasts in vivo? Physiol Plant 72: 666–680

    CAS  Google Scholar 

  • Rockholm DC and Yamamoto HY (1996) Violaxanthin depoxidase. Purification of a 43-kilodalton lumenal protein from lettuce by lipid-affinity precipitation with monogalactosyl-diacylglyceride. Plant Physiol 110: 697–703

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Phillip D, Young AJ and Horton P (1997) Carotenoid-dependent oligomerisation of the major chlorophyll a/b light-harvesting complex of Photosystem II of plants. Biochemistry 36: 7855–7859

    Article  CAS  PubMed  Google Scholar 

  • Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72: 681–689

    CAS  Google Scholar 

  • Samson G and Bruce D (1995) Complementary changes in absorption cross-sections of Photosystems I and II due to phosphorylation and Mg2+-depletion in spinach thylakoids. Biochim Biophys Acta 1232: 21–26

    Google Scholar 

  • Savikhin S, Van Amerongan H, Kwa SLS, Van Grondelle R and Struve WS (1994) Low-temperature energy transfer in LHC-II trimers from the Chl a/b light-harvesting antenna of Photosystem II. Biophys J 66: 1597–1603

    CAS  PubMed  Google Scholar 

  • Scheller HV (1996) In vitro cyclic electron transport in barley thylakoids follows two independent pathways. Plant Physiol 110: 187–194

    CAS  PubMed  Google Scholar 

  • Shen B, Jensen RG and Bohuent HJ (1997) Mannitol protects against oxidation byhydroxyl radicals. Plant Physiol 115: 527–532

    CAS  PubMed  Google Scholar 

  • Shipman LL (1980) A theoretical study of excitons in chlorophyll a photosystems on a picosecond timescale. Photochem Photobiol 31: 157

    CAS  Google Scholar 

  • Siefermann D and Yamamoto HY (1975) Properties of NADPH and oxygen-dependent zeaxanthin apoxidation in isolated chloroplasts. Arch Biochem Biophys 171: 70–77

    Article  CAS  PubMed  Google Scholar 

  • Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69: 561–568

    CAS  Google Scholar 

  • Simpson DJ and Knoetzel J (1996) Light-harvesting complexes of plants and algae: Introduction, survey and nomenclature. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 493–506. Kluwer, Dordrecht

    Google Scholar 

  • Sonoike K (1996a) Degradation of psaB gene product, the reaction center subunit of Photosystem I, is caused during photoinhibition of Photosystem I: Possible involvement of active oxygen species. Plant Sci (Shannon) 115: 157–164

    CAS  Google Scholar 

  • Sonoike K (1996b) Photoinhibition of Photosystem I–Its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37: 239–247

    CAS  Google Scholar 

  • Sonoike K and Terashima I (1994) Mechanism of Photosystem I photoinhibition in leaves of Cucumis sativus L. Planta 194: 287–293

    CAS  Google Scholar 

  • Sonoike K, Hamo M, Hihara Y, Hiyama T and Enami I (1997) The mechanism of the degradation of psaB gene products, one of the photosynthetic reaction center subunits of Photosystem I, upon photoinhibition. Photosynth Res 53: 55–63

    Article  CAS  Google Scholar 

  • Takahashi M and Asada K (1988) Superoxide production in the aprotic interior of chloroplast thylakoids. Arch Biochem Biophys 267: 714–722

    Article  CAS  PubMed  Google Scholar 

  • Telfer A, Rivas JD and Barber J (1991) β-carotene within the isolated Photosystem-II reaction center—photooxidation and irreversible bleaching of this chromophore by oxidized P680 Biochim Biophys Acta 1060: 106–114

    CAS  Google Scholar 

  • Telfer A, Bishop SM, Phillips D and Barber J (1994a) Isolated photosynthetic reaction-center of Photosystem II as a sensitizer for the formation of singlet oxygen—detection and quantum yield determination using a chemical trapping technique. J Biol Chem 269: 13244–13253

    CAS  PubMed  Google Scholar 

  • Telfer A, Dhami S, Bishop SM, Phillips D and Barber J (1994b) β-carotene quenches singlet oxygen formed by isolated Photosystem II reaction centers. Biochemistry 33: 14469–14474

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Funayama S and Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L at low temperatures is Photosystem I, not Photosystem II. Planta 193: 300–306

    Article  CAS  Google Scholar 

  • Tikhonov AN, Khomutov GB and Ruuge EK (1984) Electron transport control in chloroplasts. Effects of magnesium ions on the electron flow between two photosystems. Photobiochem Photobiophys 8: 261–269

    CAS  Google Scholar 

  • Trebst A and Depka B (1997) Role of carotene in the rapid turnover and assembly of Photosystem II in Chlamydomonas reinhardtii. FEBS Lett 400: 359–362

    Article  CAS  PubMed  Google Scholar 

  • Trissl HW (1997) Determination of the quenching efficiency of the oxidized primary donor of Photosystem I, P +700 : Implications for the trapping mechanism. Photosynth Res 54: 237–240

    Article  CAS  Google Scholar 

  • Tschiersch H and Ohmann E (1993) Photoinhibition in Euglena gracilis. Planta 191: 316–323

    Article  CAS  Google Scholar 

  • Van Grondelle R, Dekker JP, Gillbro T and Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    CAS  Google Scholar 

  • Van Mieghem F, Nitschke W, Mathis P and Rutherford AW (1989) The influence of the quinone-iron electron acceptor complex on the reaction centre photochemistry of Photosystem II. Biochim Biophys Acta 977: 207–214

    Google Scholar 

  • Van Mieghem F, Brettel K, Hillman B, Kamlowski A, Rutherford AW and Schlodder E (1995) Charge recombination reactions in Photosystem II. 1. Yields, recombination pathways, and kinetics of the primary pair. Biochemistry 24: 4798–4813

    Google Scholar 

  • Verhoeven AS, Adams, WW, III and Demmig-Adams B (1996) Close relationship between the state of the xanthophyll cycle pigments and Photosystem II efficiency during recovery from winter stress. Physiologia Plantarum 96: 567–576

    Article  CAS  Google Scholar 

  • Whitmarsh J, Samson, G and Poulson M (1994) Photoprotection in Photosystem II—the role of cytochrome b559 In: Baker NR, Bowyer JR (eds), Photoinhibition of Photosynthesis, pp 75–93, Bios, Oxford

    Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D and Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J 16: 4806–4816

    Article  CAS  PubMed  Google Scholar 

  • Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. Biochim Biophys Acta 505: 355–427

    CAS  PubMed  Google Scholar 

  • Wydrzynski T, Ångström J and Vänngård T (1989) H2O2 formation by Photosystem II. Biochim Biophys Acta 973: 23–28

    CAS  Google Scholar 

  • Yamamoto HY and Bassi R (1996) Carotenoids: localization and function. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 539–563. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Youngman RJ and Elstner EF (1981) Oxygen species in paraquat toxicity: The crypto-OH radical. FEBS Lett 129: 265–268

    Article  CAS  PubMed  Google Scholar 

  • Zelitch I (1973) Plant productivity and the control of photorespiration. Proc Natl Acad Sci USA 10: 579–584

    Google Scholar 

  • Zelitch I (1990) Oxygen resistant photosynthesis in tobacco plants selected for oxygen resistant growth. In: Zelitch I (ed), Perspectives in Biochemical and Genetic Regulation of Photosynthesis, pp 239–252. Alan R Liss Inc., New York

    Google Scholar 

  • Ziem-Hanck K and Heber U (1980) Oxygen requirement of photosynthetic CO2 assimilation. Biochim Biophys Acta 951: 266–274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Foyer, C.H., Harbinson, J. (1999). Relationships Between Antioxidant Metabolism and Carotenoids in the Regulation of Photosynthesis. In: Frank, H.A., Young, A.J., Britton, G., Cogdell, R.J. (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, vol 8. Springer, Dordrecht. https://doi.org/10.1007/0-306-48209-6_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-48209-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5942-5

  • Online ISBN: 978-0-306-48209-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics