Skip to main content
  • 1249 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schütz, W., Corrosion fatigue. The forgotten factor in assessing durability. Estimation, enhancement and control of aircraft fatigue performance (eds. J.M. Grandage and G.S. Jost). EMAS(1995) pp.1–51.

    Google Scholar 

  2. Gough, H.J. and Sopwith, D.G., Some comparative corrosion fatigue tests employing two types of stressing action. J. Iron and Steel Inst., Vol.127 (1933) pp.301–332.

    Google Scholar 

  3. Pao, P.S., Wei, W. and Wei, R.P., Effect of frequency on fatigue crack growth response of AISI 4340 steel in water vapor. Environment-Sensitive Fracture of Engineering Materials, (Z.A. Foroulis, Ed.), The Metallurgical Society of AIME, Warrendale, USA (1977) pp.565–580.

    Google Scholar 

  4. Bradshaw, F.J. and Wheeler, C., The effect of gaseous environment and fatigue frequency on the growth of fatigue cracks in some aluminium alloys. Int. J. of Fracture Mechanics, Vol. 6 0969)pp.255–268.

    Google Scholar 

  5. Broek. D., Fatigue crack growth and residual strength of aluminium sheet at low temperatures. Nat. Aerospace Lab. NLR, Report TR 72096, Amsterdam (1972).

    Google Scholar 

  6. ’t Hart, W.G.J., Nederveen, A. Nasette, J.H. and Van Wijk, A., Influence of corrosion damage on fatigue crack initiation. Nat. Aerospace Lab. NLR, Report TR 75080, Amsterdam (1975).

    Google Scholar 

  7. Duquette, D.J. and Uhlig, H.H. Effect of dissolved oxygen and NaCl on corrosion fatigue of 0.18% carbon steel. Trans. A.S.M, Vol. 61 (1968) pp.449–456.

    Google Scholar 

  8. Lynch, C.T., Vahldiek, F.W., Bhansali, K.J. and Summitt, R., Inhibition of environmentally enhanced crack growth rates in high strength steels. Environment-Sensitive Fracture of Engineering Materials, (Z.A. Foroulis, Ed.), The Metallurgical Society of AIME, Warrendale, USA (1977) pp.639–658.

    Google Scholar 

  9. Barsom, J.M., Effect of cyclic stress form on corrosion fatigue crack propagation below KIsce in a high yield strength steel. Corrosion Fatigue: Chemistry, Mechanics and Microstructure (O.F. Devereux, A.J. McEvily and R.W. Staehle, Eds.), Vol. NACE-2, pp.424–436. Houston: National Association of Corrosion Engineers (1972).

    Google Scholar 

  10. Atkinson, J.D. and Lindley, T.C., Effect of stress waveform and hold-time on environmentally assisted fatigue crack propagation in a C-Mn structural steel. Metal Science, Vol.13 (1979) pp.444–448.

    Google Scholar 

  11. Schijve, J., The significance of fracture mechanisms for the application of fracture mechanics to fatigue crack growth in Al-alloy structures and materials. Proc. of the USAF Aircraft Structural Integrity Program Conference, San Antonio (1999).

    Google Scholar 

  12. Komai, K., Corrosion fatigue crack retardation and enhancement and fracture surface reconstruction technique. Environment assisted fatigue (P. Scott and R.A. Cottis, Eds.), EGF7, Mechanical Engineering Publications, London (1990) pp. 189–204.

    Google Scholar 

  13. Wanhill, R.J.H. and Schra, L., Corrosion fatigue crack arrest in aluminium alloys. ASTMSTP 1085 (1990) pp.144–165.

    Google Scholar 

  14. Forsyth, P.J.E., The physical basis of metal fatigue. Blackie and Son, London (1969).

    Google Scholar 

  15. Horibe, S., Nakamura, M. and Sumita, M., The effect of seawater on fracture mode transition in fatigue. Int. J. of Fatigue, Vol. 7 (1985) pp.224–227.

    Google Scholar 

  16. Schijve. J. and Arkema, W.J., Crack closure and the environmental effect on fatigue crack growth. Fac. Aerospace Eng., Report VTH-217, Delft (1976).

    Google Scholar 

  17. Review of accident investigation in Report MV-73-03. Ministere des Communications Administration de ľAèronautique, Brussels (1973).

    Google Scholar 

Some general references

  1. Barsom, J.M. and Rolfe, S., Fracture and fatigue control in structures. Applications of fracture mechanics (3rd ed.). Butterworth-Heinemann (1999).

    Google Scholar 

  2. Pao, P.S., Mechanisms of corrosion fatigue. Fatigue and Fracture, American Society for Materials, Handbook Vol.19, ASM (1996) pp.185–192.

    Google Scholar 

  3. Andresen, P.L., Corrosion fatigue testing. Fatigue and Fracture, American Society for Materials, Handbook Vol.19, ASM (1996) pp. 193–209.

    Google Scholar 

  4. Dover, W.D., Dharmavasan, S., Brennan, F.P. and Marsh, K.J. (Eds), Fatigue crack growth in offshore structures. EMAS, Solihull, UK (1995).

    Google Scholar 

  5. Carpinteri, A., Handbook of fatigue cracking — Propagation in metallic structures. Elsevier, Amsterdam (1994).

    Google Scholar 

  6. Lynch, S.P., Failures of structures and components by environmentally assisted cracking. Engineering Failure Analysis, Vol.1 (1994) pp.77–90.

    Article  Google Scholar 

  7. Gangloff, R.P., Corrosion fatigue crack propagation in metals. NASA CR 4301 (1990).

    Google Scholar 

  8. Baloun, C.H. (Ed.), Corrosion in natural waters. ASTM STP 1086 (1990).

    Google Scholar 

  9. Scott, P. and Cottis, R.A. (Eds.), Environment Assisted Fatigue. EGF Publication 7, Mechanical Engineering Publications, London (1990).

    Google Scholar 

  10. W.B. Lisagor, T.W. Crooker and B.N. Leis (Eds.), Environmentally assisted cracking. Science and Engineering, ASTM STP 1049, 1990.

    Google Scholar 

  11. Sudarshan, T.S., Srivatsan, T.S. and Harvey II, D.P., Fatigue processes in metals — Role of aqueous environments. Eng. Fracture Mechanics, Vol.36 (1990) pp.827–852.

    Google Scholar 

  12. Standard specification for substitute ocean water. ASTM-D-01141-90 (1990), American Society for Testing and Materials.

    Google Scholar 

  13. Jones, W.J.D. and Blackie, A.P., Effect of stress ratio on the cyclic tension corrosion fatigue life of notched steel BS970:976M33 in sea water with cathodic protection. Int. J. of Fatigue, Vol. 11 (1989) pp.417–422.

    Google Scholar 

  14. Corrosion fatigue. AGARD-CP-316 (1981).

    Google Scholar 

  15. Forrest, P.G., Fatigue of Metals. Pergamon Press, Oxford (1962).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Corrosion Fatigue. In: Fatigue of Structures and Materials. Springer, Dordrecht. https://doi.org/10.1007/0-306-48396-3_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-48396-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7013-0

  • Online ISBN: 978-0-306-48396-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics