Skip to main content

Molecular Genetics of Vestibular Organ Development

  • Chapter
The Vestibular System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 19))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelhak S, Kalatzis V, Heilig R, Compain S, et al. (1997) A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 15:157–164.

    Article  CAS  PubMed  Google Scholar 

  • Acampora D, Mazan S, Lallemand Y, Avantaggiato V, et al. (1995) Forebrain and midbrain regions are deleted in Otx2-/-mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121:3279–3290.

    CAS  PubMed  Google Scholar 

  • Acampora D, Mazan S, Avantaggiato V, Barone P, et al. (1996) Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat Genet 14:218–222.

    Article  CAS  PubMed  Google Scholar 

  • Acampora D, Avantaggiato V, Tuorto F, Barone P, et al. (1999a) Differential transcriptional control as the major molecular event in generating Otx1-/-and Otx2-/-divergent phenotypes. Development 126:1417–1426.

    CAS  PubMed  Google Scholar 

  • Acampora D, Merlo GR, Paleari L, Zerega B, et al. (1999b) Craniofacial, vestibular, and bone defects in mice lacking the Distal-less-related gene Dlx5. Development 126:3795–3809.

    CAS  PubMed  Google Scholar 

  • Adam J, Myat A, Le Roux I, Eddison M, et al. (1998) Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 125:4645–4654.

    CAS  PubMed  Google Scholar 

  • Alavizadeh A, Kiernan AE, Nolan P, Lo C, et al. (2001) The Wheels mutation in the mouse causes vascular, hindbrain, and inner ear defects. Dev Biol 234:244–260.

    Article  CAS  PubMed  Google Scholar 

  • Anagnostopoulos A (2002) A compendium of mouse knockouts with inner ear defects. Trends Genet 18:S21–S38.

    Article  Google Scholar 

  • Anderson DJ, Jan YN (1997) The determination of the neuronal phenotype. In: Cowan WM, Jessell TM, Zipursky SL (eds) Molecular and Cellular Approaches to Neural Development. New York: Oxford University Press, pp. 26–63.

    Google Scholar 

  • Ang SL, Jin O, Rhinn M, Daigle N, et al. (1996) A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122:243–252.

    CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Simpson P (1991) Choosing a cell fate: a view from the Notch locus. Trends Genet 7:403–408.

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776.

    Article  CAS  PubMed  Google Scholar 

  • Axelrod JD, Matsuno K, Artavanis-Tsakonas S, Perrimon N (1996) Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science 271:1826–1832.

    CAS  PubMed  Google Scholar 

  • Bermingham NA, Hassan BA, Price SD, Vollrath MA, et al. (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi LM, Conover JC, Fritzsch B, DeChiara T, et al. (1996) Degeneration of vestibular neurons in late embryogenesis of both heterozygous and homozygous BDNF null mutant mice. Development 122:1965–1973.

    CAS  PubMed  Google Scholar 

  • Bissonnette JP, Fekete DM (1996) Standard atlas of the gross anatomy of the developing inner ear of the chicken. J Comp Neurol 368:620–630.

    Article  CAS  PubMed  Google Scholar 

  • Boettger T, Hubner CA, Maier H, Rust MB, et al. (2002) Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416:874–878.

    Article  CAS  PubMed  Google Scholar 

  • Brigande JV, Iten LE, Fekete DM (2000a) A fate map of chick otic cup closure reveals lineage boundaries in the dorsal otocyst. Dev Biol 227:256–270.

    Article  CAS  PubMed  Google Scholar 

  • Brigande JV, Kiernan AE, Gao X, Iten LE, et al. (2000b) Molecular genetics of pattern formation in the inner ear: do compartment boundaries play a role? Proc Natl Acad Sci USA 97:11700–11706.

    Article  CAS  PubMed  Google Scholar 

  • Caldwell JC, Eberl DF (2002) Towards a molecular understanding of Drosophila hearing. J Neurobiol 53:172–189.

    Article  CAS  PubMed  Google Scholar 

  • Cantos R, Cole LK, Acampora D, Simeone A, et al. (2000) Patterning of the mammalian cochlea. Proc Natl Acad Sci USA 97:11707–11713.

    Article  CAS  PubMed  Google Scholar 

  • Carney PR, Couve E (1989) Cell polarity changes and migration during early development of the avian peripheral auditory system. Anat Rec 225:156–164.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter EM, Goddard JM, Chisaka O, Manley NR, et al. (1993) Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118:1063–1075.

    CAS  PubMed  Google Scholar 

  • Casimiro MC, Knollmann BC, Ebert SN, Vary JC Jr, et al. (2001) Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen syndrome. Proc Natl Acad Sci USA 98:2526–2531.

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Nunes FD, De Jesus-Escobar JM, Harland R, et al. (1999) Ectopic noggin blocks sensory and nonsensory organ morphogenesis in the chicken inner ear. Dev Biol 216:369–381.

    Article  CAS  PubMed  Google Scholar 

  • Chang W, ten Dijke P, Wu DK (2002) BMP pathways are involved in otic capsule formation and epithelial-mesenchymal signaling in the developing chicken inner ear. Dev Biol 251:380–394.

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129:2495–2505.

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Amoui M, Zhang Z, Mardon G (1997) Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 91:893–903.

    CAS  PubMed  Google Scholar 

  • Chen Y, Bei M, Woo I, Satokata I, et al. (1996) Msx1 controls inductive signaling in mammalian tooth morphogenesis. Development 122:3035–3044.

    CAS  PubMed  Google Scholar 

  • Choo D, Sanne JL, Wu DK (1998) The differential sensitivities of inner ear structures to retinoic acid during development. Dev Biol 204:136–150.

    Article  CAS  PubMed  Google Scholar 

  • Cohen SM, Bronner G, Kuttner F, Jurgens G, et al. (1989) Distal-less encodes a homoeodomain protein required for limb development in Drosophila. Nature 338:432–434.

    CAS  PubMed  Google Scholar 

  • Cole LK, Le Roux I, Nunes F, Laufer E, et al. (2000) Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate 1, and lunatic fringe. J Comp Neurol 424:509–520.

    Article  CAS  PubMed  Google Scholar 

  • Cordes SP, Barsh GS (1994) The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79:1025–1034.

    Article  CAS  PubMed  Google Scholar 

  • Cowan CA, Yokoyama N, Bianchi LM, Henkemeyer M, et al. (2000) EphB2 guides axons at the midline and is necessary for normal vestibular function. Neuron 26:417–430.

    CAS  PubMed  Google Scholar 

  • Cox GA, Mahaffey CL, Nystuen A, Letts VA, et al. (2000) The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development. Nat Genet 26:198–202.

    CAS  PubMed  Google Scholar 

  • Cremers CW, Admiraal RJ, Huygen PL, Bolder C, et al. (1998) Progressive hearing loss, hypoplasia of the cochlea and widened vestibular aqueducts are very common features in Pendred’s syndrome. Int J Pediatr Otorhinolaryngol 45:113–123.

    Article  CAS  PubMed  Google Scholar 

  • Crouch JJ, Sakaguchi N, Lytle C, Schulte BA (1997) Immunohistochemical localization of the Na-K-Cl co-transporter (NKCC1) in the gerbil inner ear. J Histochem Cytochem 45:773–778.

    CAS  PubMed  Google Scholar 

  • de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, Huber I, et al. (1995) Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 267:685–688.

    PubMed  Google Scholar 

  • Delpire E, Lu J, England R, Dull C, et al. (1999) Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22:192–195.

    Article  CAS  PubMed  Google Scholar 

  • Deol MS (1964) The abnormalities of the inner ear in kreisler mice. J Embryol Exp Morphol 12:475–490.

    CAS  PubMed  Google Scholar 

  • Deol M (1966) Influence of the neural tube on the differentiation of the inner ear in the mammalian embryo. Nature 209:219–220.

    CAS  PubMed  Google Scholar 

  • Deol MS (1983) Development of auditory and vestibular systems in mutant mice. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 309–333.

    Google Scholar 

  • Depew MJ, Liu JK, Long JE, Presley R, et al. (1999) Dlx5 regulates regional development of the branchial arches and sensory capsules. Development 126: 3831–3846.

    CAS  PubMed  Google Scholar 

  • Dewulf N, Verschueren K, Lonnoy O, Moren A, et al. (1995) Distinct spatial and temporal expression patterns of two type I receptors for bone morphogenetic proteins during mouse embryogenesis. Endocrinology 136:2652–2663.

    Article  CAS  PubMed  Google Scholar 

  • Dixon MJ, Gazzard J, Chaudhry SS, Sampson N, et al. (1999) Mutation of the Na-K-Cl co-transporter gene Slc12a2 results in deafness in mice. Hum Mol Genet 8:1579–1584.

    Article  CAS  PubMed  Google Scholar 

  • Dohlman G (1961) Excretion and absorption of endolymph in the vestibular apparatus. In: de Reuck AVS, Knight H (eds) Ciba Foundation Symposium in Motatic, Kinesthetic and Vestibular Mechanisms. London: Churchill, pp. 138–143.

    Google Scholar 

  • Eddison M, Le Roux I, Lewis J (2000) Notch signaling in the development of the inner ear: lessons from Drosophila. Proc Natl Acad Sci USA 97:11692–11699.

    Article  CAS  PubMed  Google Scholar 

  • Epstein DJ, Vekemans M, Gros P (1991) Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67:767–774.

    Article  CAS  PubMed  Google Scholar 

  • Everett LA, Glaser B, Beck JC, Idol JR, et al. (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17: 411–422.

    Article  CAS  PubMed  Google Scholar 

  • Everett LA, Morsli H, Wu DK, Green ED (1999) Expression pattern of the mouse ortholog of the Pendred’s syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc Natl Acad Sci USA 96:9727–9732.

    Article  CAS  PubMed  Google Scholar 

  • Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, et al. (2001) Targeted disruption of mouse Pds provides key insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10:153–161.

    Article  CAS  PubMed  Google Scholar 

  • Evrard YA, Lun Y, Aulehla A, Gan L, et al. (1998) Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394:377–381.

    Article  CAS  PubMed  Google Scholar 

  • Failli V, Bachy I, Retaux S (2002) Expression of the LIM-homeodomain gene Lmx1a (dreher) during development of the mouse nervous system. Mech Dev 118: 225–228.

    Article  CAS  PubMed  Google Scholar 

  • Fekete DM (1999) Development of the vertebrate ear: insights from knockouts and mutants. Trends Neurosci 22:263–269.

    Article  CAS  PubMed  Google Scholar 

  • Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol 12:35–42.

    Article  CAS  PubMed  Google Scholar 

  • Fekete DM, Homburger SA, Waring MT, Riedl AE, et al. (1997) Involvement of programmed cell death in morphogenesis of the vertebrate inner ear. Development 124:2451–2461.

    CAS  PubMed  Google Scholar 

  • Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21:309–345.

    Article  CAS  PubMed  Google Scholar 

  • Frenz DA, Galinovic-Schwartz V, Liu W, Flanders KC, et al. (1992) Transforming growth factor beta 1 is an epithelial-derived signal peptide that influences otic capsule formation. Dev Biol 153:324–336.

    Article  CAS  PubMed  Google Scholar 

  • Frenz DA, Liu W, Williams JD, Hatcher V, et al. (1994) Induction of chondrogenesis: requirement for synergistic interaction of basic fibroblast growth factor and transforming growth factor-beta. Development 120:415–424.

    CAS  PubMed  Google Scholar 

  • Frenz DA, Liu W, Capparelli M (1996) Role of BMP-2a in otic capsule chondrogenesis. Ann NY Acad Sci 785:256–258.

    CAS  PubMed  Google Scholar 

  • Frisen J, Holmberg J, Barbacid M (1999) Ephrins and their Eph receptors: multitalented directors of embryonic development. EMBO J 18:5159–5165.

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Silos-Santiago I, Smeyne R, Fagan M, et al. (1995) Reduction and loss of inner ear innervation in trkB and trkC receptor knockout mice: a whole mount DiI and scanning electron microscopic analysis. Aud Neurosci 1:401–417.

    Google Scholar 

  • Fritzsch B, Silos-Santiago I, Bianchi LM, Farinas I (1997) Effects of neurotrophin and neurotrophin receptor disruption on the afferent inner ear innervation. Semin Cell Dev Biol 8:277–284.

    Article  CAS  Google Scholar 

  • Fritzsch B, Barald KF, Lomax MI (1998) Early embryology of the vertebrate ear. In: Rubel EW, Popper AN, Fay RR (eds) Development of the Auditory System. Springer Handbook of Auditory Research, Volume 9. New York: Springer, pp. 80–145.

    Google Scholar 

  • Fritzsch B, Pirvola U, Ylikoski J (1999) Making and breaking the innervation of the ear: neurotrophic support during ear development and its clinical implications. Cell Tissue Res 295:369–382.

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW, Bermingham NA (2000) Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies. Neuroreport 11:R35–44.

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Signore M, Simeone A (2001) Otx1 null mutants show partial segregation of sensory epithelial comparable to lamprey ears. Dev Genes Evol 211: 388–396.

    Article  CAS  PubMed  Google Scholar 

  • Gavalas A, Studer M, Lumsden A, Rijli FM, et al. (1998) Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 125:1123–1136.

    CAS  PubMed  Google Scholar 

  • Gerlach LM, Hutson MR, Germiller JA, Nguyen-Luu D, et al. (2000) Addition of the BMP4 antagonist, noggin, disrupts avian inner ear development. Development 127:45–54.

    CAS  PubMed  Google Scholar 

  • Giraldez F (1998) Regionalized organizing activity of the neural tube revealed by the regulation of lmx1 in the otic vesicle. Dev Biol 203:189–200.

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Oshima T, Ikeda K, Ueda N, et al. (1997) Expression and localization of the Na-K-2Cl cotransporter in the rat cochlea. Brain Res 765:324–326.

    Article  CAS  PubMed  Google Scholar 

  • Goulding M, Sterrer S, Fleming J, Balling R, et al. (1993) Analysis of the Pax-3 gene in the mouse mutant splotch. Genomics 17:355–363.

    Article  CAS  PubMed  Google Scholar 

  • Goulding MD, Chalepakis G, Deutsch U, Erselius JR, et al. (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10:1135–1147.

    CAS  PubMed  Google Scholar 

  • Haddon C, Jiang YJ, Smithers L, Lewis J (1998) Delta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development 125:4637–4644.

    CAS  PubMed  Google Scholar 

  • Hadrys T, Braun T, Rinkwitz-Brandt S, Arnold HH, et al. (1998) Nkx5-1 controls semicircular canal formation in the mouse inner ear. Development 125:33–39.

    CAS  PubMed  Google Scholar 

  • Hallbook F, Ibanez CF, Ebendal T, Persson H (1993) Cellular localization of brainderived neurotrophic factor and neurotrophin-3 mRNA expression in the early chicken embryo. Eur J Neurosci 5:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Thomsen GH (1995) Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet 17:78–89.

    Article  CAS  PubMed  Google Scholar 

  • Hicks C, Johnston SH, diSibio G, Collazo A, et al. (2000) Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat Cell Biol 2:515–520.

    CAS  PubMed  Google Scholar 

  • Hirth F, Therianos S, Loop T, Gehring WJ, et al. (1995) Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila. Neuron 15:769–778.

    Article  CAS  PubMed  Google Scholar 

  • Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10:1580–1594.

    CAS  PubMed  Google Scholar 

  • Huang EJ, Liu W, Fritzsch B, Bianchi LM, et al. (2001) Brn-3a is a transcriptional regulator of soma size, target field innervation, and axon pathfinding of Inner ear sensory neurons. Development 126:2869–2882.

    Google Scholar 

  • Hui CC, Slusarski D, Platt KA, Holmgren R, et al. (1994) Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2 and Gli-3, in ectoderm-and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev Biol 162:402–413.

    Article  CAS  PubMed  Google Scholar 

  • Johnsen T, Jorgensen MB, Johnsen S (1986) Mondini cochlea in Pendred’s syndrome. A histological study. Acta Otolaryngol 102:239–247.

    CAS  PubMed  Google Scholar 

  • Johnson DR (1967) Extra-toes: a new mutant gene causing multiple abnormalities in the mouse. J Embryol Exp Morphol 17:543–581.

    CAS  PubMed  Google Scholar 

  • Johnson KR, Cook SA, Erway LC, Matthews AN, et al. (1999) Inner ear and kidney anomalies caused by IAP insertion in an intron of the Eya1 gene in a mouse model of BOR syndrome. Hum Mol Genet 8:645–653.

    Article  CAS  PubMed  Google Scholar 

  • Ju BG, Jeong S, Bae E, Hyun S, et al. (2000) Fringe forms a complex with Notch. Nature 405:191–195.

    Article  CAS  PubMed  Google Scholar 

  • Kalatzis V, Sahly I, El-Amraoui A, Petit C (1998) Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of Branchio-Oto-Renal (BOR) syndrome. Dev Dyn 213:486–499.

    Article  CAS  PubMed  Google Scholar 

  • Karis A, Pata I, van Doorninck JH, Grosveld F, et al. (2001) Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. J Comp Neurol 429:615–630.

    Article  CAS  PubMed  Google Scholar 

  • Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, et al. (2000) KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci USA 97:4333–4338.

    Article  CAS  PubMed  Google Scholar 

  • Kiernan AE, Nunes F, Wu DK, Fekete DM (1997) The expression domain of two related homeobox genes defines a compartment in the chicken inner ear that may be involved in semicircular canal formation. Dev Biol 191:215–229.

    Article  CAS  PubMed  Google Scholar 

  • Kiernan AE, Ahituv N, Fuchs H, Balling R, et al. (2001) The Notch ligand Jagged1 is required for inner ear sensory development. Proc Natl Acad Sci USA 98:3873–3878.

    Article  CAS  PubMed  Google Scholar 

  • Kiernan AE, Steel KP, Fekete DM (2002) Development of the mouse inner ear. In: Rossant JT, Tam PPL (eds) Mouse Development: Patterning, Morphogenesis, and Organogenesis. Orlando, FL: Academic Press, pp. 539–566.

    Google Scholar 

  • Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 191: 101–118.

    CAS  Google Scholar 

  • Kil SH, Collazo A (2002) A review of inner ear fate maps and cell lineage studies. J Neurobiol 53:129–142.

    Article  PubMed  Google Scholar 

  • Kim WY, Fritzsch B, Serls A, Bakel LA, et al. (2001) NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128:417–426.

    CAS  PubMed  Google Scholar 

  • Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, et al. (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446.

    Article  CAS  PubMed  Google Scholar 

  • Ladher RK, Anakwe KU, Gurney AL, Schoenwolf GC, et al. (2000) Identification of synergistic signals initiating inner ear development. Science 290:1965–1967.

    Article  CAS  PubMed  Google Scholar 

  • Landolt JP, Correia MJ, Young ER, Cardin RP, et al. (1975) A scanning electron microscopic study of the morphology and geometry of neural surfaces and structures associated with the vestibular apparatus of the pigeon. J Comp Neurol 159:257–287.

    Article  CAS  PubMed  Google Scholar 

  • Lanford PJ, Lan Y, Jiang R, Lindsell C, et al. (1999) Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 21:289–292.

    CAS  PubMed  Google Scholar 

  • Laufer E, Dahn R, Orozco OE, Yeo CY, et al. (1997) Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation [see comments] Nature 386:366–373. [published erratum appears in Nature 388:400 (1997)].

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Hollenberg SM, Snider L, Turner DL, et al. (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268:836–844.

    CAS  PubMed  Google Scholar 

  • Lee MP, Ravenel JD, Hu RJ, Lustig LR, et al. (2000) Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 106:1447–1455.

    CAS  PubMed  Google Scholar 

  • Leger S, Brand M (2002) Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning. Mech Dev 119:91.

    Article  CAS  PubMed  Google Scholar 

  • Leimeister C, Externbrink A, Klamt B, Gessler M (1999) Hey genes: a novel subfamily of hairy-and Enhancer of split related genes specifically expressed during mouse embryogenesis. Mech Dev 85:173–177.

    Article  CAS  PubMed  Google Scholar 

  • Letts VA, Valenzuela A, Dunbar C, Zheng QY, et al. (2000) A new spontaneous mouse mutation in the Kcnel gene. Mamm Genome 11:831–835.

    Article  CAS  PubMed  Google Scholar 

  • Lewis AK, Frantz GD, Carpenter DA, de Sauvage FJ, et al. (1998) Distinct expression patterns of notch family receptors and ligands during development of the mammalian inner ear. Mech Dev 78:159–163.

    Article  CAS  PubMed  Google Scholar 

  • Li XC, Everett LA, Lalwani AK, Desmukh D, et al. (1998) A mutation in PDS causes non-syndromic recessive deafness. Nat Genet 18:215–217.

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Pereira FA, Price SD, Chu M, et al. (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14:2839–2854.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Li G, Chien JS, Raft S, et al. (2002) Sonic hedgehog regulates otic capsule chondrogenesis and inner ear development in the mouse embryo. Dev Biol 248:240–250.

    Article  CAS  PubMed  Google Scholar 

  • Livesey FJ (1999) Netrins and netrin receptors. Cell Mol Life Sci 56:62–68.

    CAS  PubMed  Google Scholar 

  • Ma Q, Chen Z, Barrantes I, de la Pompa JL, et al. (1998) Neurogenin 1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482.

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1:129–143.

    CAS  PubMed  Google Scholar 

  • Maconochie M, Nonchev S, Morrison A, Krumlauf R (1996) Paralogous Hox genes: function and regulation. Annu Rev Genet 30:529–556.

    Article  CAS  PubMed  Google Scholar 

  • Malicki J, Schier AF, Solnica-Krezel L, Stemple DL, et al. (1996) Mutations affecting development of the zebrafish ear. Development 123:275–283.

    CAS  PubMed  Google Scholar 

  • Manfre L, Genuardi P, Tortorici M, Lagalla R (1997) Absence of the common crus in Goldenhar syndrome. Am J Neuroradiol 18:773–775.

    CAS  PubMed  Google Scholar 

  • Mansour SL (1994) Targeted disruption of int-2 (fgf-3) causes developmental defects in the tail and inner ear. Mol Reprod Dev 39:62–68.

    Article  CAS  PubMed  Google Scholar 

  • Mansour SL, Goddard JM, Capecchi MR (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117:13–28.

    CAS  PubMed  Google Scholar 

  • Manzanares M, Trainor PA, Ariza-McNaughton L, Nonchev S, et al. (2000) Dorsal patterning defects in the hindbrain, roof plate and skeleton in the dreher (dr(J)) mouse mutant. Mech Dev 94:147–156.

    Article  CAS  PubMed  Google Scholar 

  • Mark M, Lufkin T, Vonesch JL, Ruberte E, et al. (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119:319–338.

    CAS  PubMed  Google Scholar 

  • Maroon H, Walshe J, Mahmood R, Kiefer P, et al. (2002) Fgf3 and Fgf8 are required together for formation of the otic placode and vesicle. Development 129: 2099–2108.

    CAS  PubMed  Google Scholar 

  • Maruyama K, Tsukada T, Ohkura N, Bandoh S, et al. (1998) The NGFI-B subfamily of the nuclear receptor superfamily (review). Int J Oncol 12:1237–1243.

    CAS  PubMed  Google Scholar 

  • McKay IJ, Lewis J, Lumsden A (1996) The role of FGF-3 in early inner ear development: an analysis in normal and kreisler mutant mice. Dev Biol 174:370–378.

    Article  CAS  PubMed  Google Scholar 

  • Merlo GR, Paleari L, Mantero S, Zerega B, et al. (2002) The Dlx5 homeobox gene is essential for vestibular morphogenesis in the mouse embryo through a BMP4-mediated pathway. Dev Biol 248:157–169.

    Article  CAS  PubMed  Google Scholar 

  • Millonig JH, Millen KJ, Hatten ME (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769.

    CAS  PubMed  Google Scholar 

  • Minowa O, Ikeda K, Sugitani Y, Oshima T, et al. (1999) Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness [see comments]. Science 285:1408–1411.

    Article  CAS  PubMed  Google Scholar 

  • Mizuta K, Adachi M, Iwasa KH (1997) Ultrastructural localization of the Na-K-Cl cotransporter in the lateral wall of the rabbit cochlear duct. Hear Res 106:154–162.

    Article  CAS  PubMed  Google Scholar 

  • Morrison A, Hodgetts C, Gossler A, Hrabe de Angelis M, et al. (1999) Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech Dev 84:169–172.

    Article  CAS  PubMed  Google Scholar 

  • Morsli H, Choo D, Ryan A, Johnson R, et al. (1998) Development of the mouse inner ear and origin of its sensory organs. J Neurosci 18:3327–3335.

    CAS  PubMed  Google Scholar 

  • Morsli H, Tuorto F, Choo D, Postiglione MP, et al. (1999) Otx1 and Otx2 activities are required for the normal development of the mouse inner ear. Development 126:2335–2343.

    CAS  PubMed  Google Scholar 

  • Mowbray C, Hammerschmidt M, Whitfield TT (2001) Expression of BMP signaling pathway member in the developing zebrafish inner ear and lateral line. MOD 108:179–184.

    CAS  PubMed  Google Scholar 

  • Myat A, Henrique D, Ish-Horowicz D, Lewis J (1996) A chick homologue of Serrate and its relationship with Notch and Delta homologues during central neurogenesis. Dev Biol 174:233–247.

    Article  CAS  PubMed  Google Scholar 

  • Nardelli J, Thiesson D, Fujiwara Y, Tsai FY, et al. (1999) Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev Biol 210:305–321.

    Article  CAS  PubMed  Google Scholar 

  • Neyroud N, Tesson F, Denjoy I, Leibovici M, et al. (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 15:186–189.

    Article  CAS  PubMed  Google Scholar 

  • Noramly S, Grainger RM (2002) Determination of the embryonic inner ear. J Neurobiol 53:100–128.

    Article  CAS  PubMed  Google Scholar 

  • O’Hara E, Cohen B, Cohen SM, McGinnis W (1993) Distal-less is a downstream gene of Deformed required for ventral maxillary identity. Development 117: 847–856.

    CAS  PubMed  Google Scholar 

  • Panin VM, Papayannopoulos V, Wilson R, Irvine KD (1997) Fringe modulates Notch-ligand interactions. Nature 387:908–912.

    CAS  PubMed  Google Scholar 

  • Papayannopoulos V, Tomlinson A, Panin VM, Rauskolb C, et al. (1998) Dorsal-ventral signaling in the Drosophila eye. Science 281:2031–2034.

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Latterich M (1998) The AAA team: related ATPases with diverse functions. Trends Cell Biol 8:65–71.

    Article  CAS  PubMed  Google Scholar 

  • Pauley S, Wright T, Pirvola U, Ornitz DM, Beisel KW, et al. (2003) Expression and function of FGF-10 in mammalian inner ear development. Dev Dynamics 227:203–215.

    CAS  Google Scholar 

  • Phillips BT, Bolding K, Riley BB (2001) Zebrafish Fgf3 and Fgf8 encode redundant functions required for otic placode induction. Dev Biol 235:351–365.

    Article  CAS  PubMed  Google Scholar 

  • Phippard D, Heydemann A, Lechner M, Lu L, et al. (1998) Changes in the subcellular localization of the Brn4 gene product precede mesenchymal remodeling of the otic capsule. Hear Res 120:77–85.

    Article  CAS  PubMed  Google Scholar 

  • Phippard D, Lu L, Lee D, Saunders JC, et al. (1999) Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear. J Neurosci 19:5980–5989.

    CAS  PubMed  Google Scholar 

  • Phippard D, Boyd Y, Reed V, Fisher G, et al. (2000) The sex-linked fidget mutation abolishes Brn4/Pou3f4 gene expression in the embryonic inner ear. Hum Mol Genet 9:79–85.

    Article  CAS  PubMed  Google Scholar 

  • Pignoni F, Hu B, Zavitz KH, Xiao J, et al. (1997) The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91:881–891.

    Article  CAS  PubMed  Google Scholar 

  • Pirvola U, Spencer-Dene B, Xing-Qun L, Kettunen P, et al. (2000) Fgf/Fgfr-2 (IIIb) signaling is essential for inner ear morphogenesis. J Neurosci 20:6125–6134.

    CAS  PubMed  Google Scholar 

  • Pissarra L, Henrique D, Duarte A (2000) Expression of hes6, a new member of the Hairy/Enhancer-of-split family, in mouse development. Mech Dev 95:275–278.

    Article  CAS  PubMed  Google Scholar 

  • Ponnio T, Burton Q, Pereira FA, Wu DK, et al. (2002) The nuclear receptor Nor-1 is essential for proliferation of the semicircular canals of the mouse inner ear. Mol Cell Biol 22:935–945.

    CAS  PubMed  Google Scholar 

  • Riccomagno MM, Martinu L, Mulheisen M, Wu DK, et al. (2002) Specification of the mammalian cochlea is dependent to Sonic hedgehog. Genes Dev 16:2365–2378.

    Article  CAS  PubMed  Google Scholar 

  • Rijli FM, Mark M, Lakkaraju S, Dierich A, et al. (1993) A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75:1333–1349.

    Article  CAS  PubMed  Google Scholar 

  • Rinkwitz S, Bober E, Baker R (2001) Development of the vertebrate inner ear. Ann NY Acad Sci 942:1–14.

    CAS  PubMed  Google Scholar 

  • Rinkwitz-Brandt S, Justus M, Oldenettel I, Arnold HH, et al. (1995) Distinct temporal expression of mouse Nkx-5.1 and Nkx-5.2 homeobox genes during brain and ear development. Mech Dev 52:371–381.

    CAS  PubMed  Google Scholar 

  • Rinkwitz-Brandt S, Arnold HH, Bober E (1996) Regionalized expression of Nkx5-1, Nkx5-2, Pax2 and sek genes during mouse inner ear development. Hear Res 99:129–138.

    CAS  PubMed  Google Scholar 

  • Rivolta MN, Holley MC (1998) GATA3 is downregulated during hair cell differentiation in the mouse cochlea. J Neurocytol 27:637–647.

    Article  CAS  PubMed  Google Scholar 

  • Robinson GW, Mahon KA (1994) Differential and overlapping expression domains of Dlx-2 and Dlx-3 suggest distinct roles for Distal-less homeobox genes in craniofacial development. Mech Dev 48:199–215.

    Article  CAS  PubMed  Google Scholar 

  • Royet J, Finkelstein R (1995) Pattern formation in Drosophila head development: the role of the orthodenticle homeobox gene. Development 121:3561–3572.

    CAS  PubMed  Google Scholar 

  • Sakagami M, Fukazawa K, Matsunaga T, Fujita H, et al. (1991) Cellular localization of rat Isk protein in the stria vascularis by immunohistochemical observation. Hear Res 56:168–172.

    Article  CAS  PubMed  Google Scholar 

  • Salminen M, Meyer BI, Bober E, Gruss P (2000) Netrin 1 is required for semicircular canal formation in the mouse inner ear. Development 127:13–22.

    CAS  PubMed  Google Scholar 

  • Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6:348–356.

    Article  CAS  PubMed  Google Scholar 

  • Schimmang T, Lemaistre M, Vortkamp A, Ruther U (1992) Expression of the zinc finger gene Gli3 is affected in the morphogenetic mouse mutant extra-toes (Xt). Development 116:799–804.

    CAS  PubMed  Google Scholar 

  • Schimmang T, Minichiello L, Vazquez E, San Jose I, et al. (1995) Developing inner ear sensory neurons require TrkB and TrkC receptors for innervation of their peripheral targets. Development 121:3381–3391.

    CAS  PubMed  Google Scholar 

  • Schulze-Bahr E, Wang Q, Wedeking H, Haverkamp W, et al. (1997) KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nat Genet 17:267–268.

    CAS  PubMed  Google Scholar 

  • Scott DA, Wang R, Kreman TM, Sheffield VC, et al. (1999) The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 21:440–443.

    CAS  PubMed  Google Scholar 

  • Shailam R, Lanford PJ, Dolinsky CM, Norton CR, et al. (1999) Expression of proneural and neurogenic genes in the embryonic mammalian vestibular system. J Neurocytol 28:809–819.

    Article  CAS  PubMed  Google Scholar 

  • Silos-Santiago I, Fagan AM, Garber M, Fritzsch B, et al. (1997) Severe sensory deficits but normal CNS development in newborn mice lacking TrkB and TrkC tyrosine protein kinase receptors. Eur J Neurosci 9:2045–2056.

    Article  CAS  PubMed  Google Scholar 

  • Simeone A, Acampora D, Pannese M, D’Esposito M, et al. (1994) Cloning and characterization of two members of the vertebrate Dlx gene family. Proc Natl Acad Sci USA 91:2250–2254.

    CAS  PubMed  Google Scholar 

  • Simon MC (1995) Gotta have GATA. Nat Genet 11:9–11.

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Schulte BA (1998) Evidence for a medial K+ recycling pathway from inner hair cells. Hear Res 118:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Steel KP, Kros CJ (2001) A genetic approach to understanding auditory function. Nat Genet 27:143–149.

    Article  CAS  PubMed  Google Scholar 

  • Steel KP, Erven A, Kiernan AE (2002) Mice as models for human hereditary deafness. In: Keats BJB, Popper AN, Fay Rr (eds) Genetics and Auditory Disorders. Springer Handbook of Auditory Research, Volume 14. New York: Springer-Verlag, pp. 247–296.

    Google Scholar 

  • ten Berge D, Brouwer A, Korving J, Martin JF, et al. (1998) Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbs. Development 125:3831–3842.

    PubMed  Google Scholar 

  • Teng X, Ahn K, Bove M, Frenz D, et al. (2000) Malformations of the lateral semicircular canal occur in heterozygous Bmp4 mice. Assoc Res Otolaryngol Abstr 181:51.

    Google Scholar 

  • Torres M, Giraldez F (1998) The development of the vertebrate inner ear. Mech Dev 71:5–21.

    Article  CAS  PubMed  Google Scholar 

  • Truslove GM (1956) The anatomy and development of the Fidget mouse. J Genet 54:64–86.

    Google Scholar 

  • Tsai H, Hardisty RE, Rhodes C, Kiernan AE, et al. (2001) The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum Mol Genet 10:507–512.

    Article  CAS  PubMed  Google Scholar 

  • Van de Water TR, Li CW, Ruben RJ, Shea CA (1980) Ontogenic aspects of mammalian inner ear development. Birth Defects 16:5–45.

    PubMed  Google Scholar 

  • Vendrell V, Carnicero E, Giraldez F, Alonso MT, et al. (2000) Induction of inner ear fate by FGF3. Development 127:2011–2019.

    CAS  PubMed  Google Scholar 

  • Verpy E, Leibovici M, Petit c (1999) Characterization of Otoconin-95, the major protein of murine otoconia, provides insights into the formation of these inner ear biominerals. Proc Natl Acad Sci USA 96:529–534.

    Article  CAS  PubMed  Google Scholar 

  • Vetter DE, Mann JR, Wangemann P, Liu J, et al. (1996) Inner ear defects induced by null mutation of the isk gene. Neuron 17:1251–1264.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Van de Water T, Lufkin T (1998) Inner ear and maternal reproductive defects in mice lacking the Hmx3 homeobox gene. Development 125:621–634.

    CAS  PubMed  Google Scholar 

  • Wang W, Chan EK, Baron S, Van de Water T, et al. (2001) Hmx2 homeobox gene control of murine vestibular morphogenesis. Development 128:5017–5029.

    CAS  PubMed  Google Scholar 

  • Wangemann P, Liu J, Marcus DC (1995) Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hear Res 84:19–29.

    Article  CAS  PubMed  Google Scholar 

  • Wersäll J, Bagger-Sjöbäck D (1974) Morphology of the vestibular sense organ. In: Autrum H, Jung R, Loenstein WR, Mackay DM (eds) Handbook of Sensory Physiology: Vestibular System, Part I. New York: Springer-Verlag, pp. 124–170.

    Google Scholar 

  • Whitfield TT (2002) Zebrafish as a model for hearing and deafness. J Neurobiol 53:157–171.

    Article  PubMed  Google Scholar 

  • Whitfield TT, Granato M, van Eeden FJ, Schach U, et al. (1996) Mutations affecting development of the zebrafish inner ear and lateral line. Development 123:241–254.

    CAS  PubMed  Google Scholar 

  • Wilcox ER, Burton QL, Naz S, Riazuddin S, et al. (2001) Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104:165–172.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DG, Bhatt S, McMahon AP (1989) Expression pattern of the FGF-related proto-oncogene int-2 suggests multiple roles in fetal development. Development 105:131–136.

    CAS  PubMed  Google Scholar 

  • Winnier G, Blessing M, Labosky PA, Hogan BLM (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2116.

    CAS  PubMed  Google Scholar 

  • Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development, 130:3379–3390.

    Article  CAS  PubMed  Google Scholar 

  • Wu DK, Oh SH (1996) Sensory organ generation in the chick inner ear. J Neurosci 16:6454–6462.

    CAS  PubMed  Google Scholar 

  • Wu DK, Choo DI (2003) Development of the ear. In: Snow JB Jr (eds) Ballengers, Manual of Otorhinolaryngology Head and Neck Surgery. Hamilton, Ontario, Canada: BC Decker, Inc., pp. 25–37.

    Google Scholar 

  • Wu DK, Nunes FD, Choo D (1998) Axial specification for sensory organs versus non-sensory structures of the chicken inner ear. Development 125:11–20.

    CAS  PubMed  Google Scholar 

  • Xu PX, Woo I, Her H, Beier DR, et al. (1997) Mouse Eya homologues of the Drosophila eyes absent gene require Pax6 for expression in lens and nasal placode. Development 124:219–231.

    CAS  PubMed  Google Scholar 

  • Xu PX, Adams J, Peters H, Brown MC, et al. (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23: 113–117.

    CAS  PubMed  Google Scholar 

  • Zhang N, Gridley T (1998) Defects in somite formation in Lunatic fringe-deficient mice. Nature 394:374–377.

    CAS  PubMed  Google Scholar 

  • Zhang N, Martin GV, Kelley MW, Gridley T (2000) A mutation in the Lunatic fringe gene suppresses the effects of a Jagged2 mutation on inner hair cell development in the cochlea. Curr Biol 10:659–662.

    Article  CAS  PubMed  Google Scholar 

  • Zheng JL, Gao WQ (2000) Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 3:580–586.

    CAS  PubMed  Google Scholar 

  • Zheng JL, Shou J, Guillemot F, Kageyama R, et al. (2000) Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127:4551–4560.

    CAS  PubMed  Google Scholar 

  • Zine A, Van de Water TR, de Ribaupierre F (2000) Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 127: 3373–3383.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Chang, W., Cole, L., Cantos, R., Wu, D.K. (2004). Molecular Genetics of Vestibular Organ Development. In: Highstein, S.M., Fay, R.R., Popper, A.N. (eds) The Vestibular System. Springer Handbook of Auditory Research, vol 19. Springer, New York, NY. https://doi.org/10.1007/0-387-21567-0_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-21567-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98314-1

  • Online ISBN: 978-0-387-21567-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics