Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 160))

Conclusion

Recently the climate has been warming over most of Canada (Gullett and Skinner 1992), and the warming is expected to continue throughout the twenty-first century (IPCC 2001). This warming and changes in other meteorological variables will alter the fire regime. Significant increases in fire weather indexes are anticipated over central sections of Canada where much of the current fire activity occurs. We believe that this increase in fire weather indexes will translate into significant increases in area burned in this century. Changes in the fire regime may have a significant impact on the composition, structure, and functioning of Canadian forests. Because the fire regime responds almost immediately to changes in the climate, the fire regime may act as a catalyst for change in Canadian forests. Therefore the rate and magnitude of fire-induced changes to Canadian forests could greatly exceed changes due directly to a changing climate. These changes would be most pronounced over regions where fire is prominent, such as in the boreal forest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amiro, B.D., Todd, J.B., Wotton, B.M., Logan, K.A., Flannigan, M.D., Stocks, B.J., Mason, J.A., Skinner, W.R., Martell, D.L., and Hirsch, K.G. 2001. Direct carbon emissions from Canadian forest fires, 1959 to 1999. Can. J. For. Res. 31:512–525.

    Article  CAS  Google Scholar 

  • Anderson, J.M. 1991. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol. Appl. 1:326–347.

    Google Scholar 

  • Anderson, J.M. 1992. Response of soils to climate change. Adv. Ecol. Res. 22:163–210.

    Article  CAS  Google Scholar 

  • Apps, M.J., Price, D.T., and Wisniewski, J. 1995. Boreal Forests and Climate Change. Dortrecht: Kluwer Academic.

    Google Scholar 

  • Apps, M.J., Bhatti, J.S., Halliwell, D.H., Jiang, H., and Peng, C.H. 2000. Simulated carbon dynamics in the boreal forest of central Canada under uniform and random disturbance regimes. In Global Climate Change and Cold Regions Ecosystems, eds. R. Lal, J. Kimble, and B. Stewart, pp. 107–121. Boca Raton: CRC Press.

    Google Scholar 

  • Apps, M.J., Kurz, W.A., Luxmoore, R.J., Nilsson, L.O., Sedjo, R.A., Schmidt, R., Simpson, L.G., and Vinson, T.S. 1993. Boreal forests and tundra. Water, Air Soil Pollut. 70:39–53.

    Article  CAS  Google Scholar 

  • Bergeron, Y. 1991. The influence of island and mainland lakeshore landscapes on boreal forest fire regimes. Ecology 72:1980–1992.

    Google Scholar 

  • Bergeron, Y., and Archambault, S. 1993. Decreasing frequency of forest fires in the southern boreal zone of Québec and its relation to global warming since the end of the “Little Ice Age.” Holocene 3:255–259.

    Google Scholar 

  • Bessie, W.C., and Johnson, E.A. 1995. The relative importance of fuels and weather on fire behavior in a subalpine forest. Ecology 76:747–762.

    Google Scholar 

  • Bonan, G.B. 1989. Acomputer model of the solar radiation, soil moisture, and soil thermal regimes in boreal forests. Ecol. Model. 45:275–306.

    Article  Google Scholar 

  • BOREAS Special Issue 1997, J. Geophys. Res. 102(D24): 28731–29745.

    Article  Google Scholar 

  • Brotak, E.A., and Reifsnyder, W.E. 1977. An investigation of the synoptic situations associated with major wildland fires. J. Appl. Meteorol. 16:867–870.

    Article  Google Scholar 

  • Bryson, R.A., Irving, W.N., and Larsen, J.A. 1965. Radiocarbon and soil evidence of former forest in the southern Canadian tundra. Science 147:46–48.

    PubMed  Google Scholar 

  • Caya, D., and Laprise, R. 1999. A semi-implicit semi-lagrangian regional climate model: The Canadian RCM. Mon. Wea. Rev. 127:341–362.

    Article  Google Scholar 

  • Clark, J.S. 1988. Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quat. Res. 30:67–80.

    Article  Google Scholar 

  • Dang, Q.L., and Lieffers, V.J. 1989. Assessment of patterns of response of tree ring growth of black spruce following peatland drainage. Can. J. For. Res. 19:924–929.

    Google Scholar 

  • Deeming, J.E., Burgan, R.E., and Cohen, J.D. 1977. The National Fire-Danger Rating System—1978. USDA Forest Service Gen. Tech. Rep. INT-39 63p. Intermountain Forest and range Experiment station, Ogden Utah, 84401.

    Google Scholar 

  • Filion, L., Saint-Laurent, D., Desponts, M., and Payette, S. 1991. The late Holocene record of aeolian and fire activity in northern Quebec, Canada. Holocene 1:201–208.

    Google Scholar 

  • Flannigan, M.D. 1993. Fire regime and the abundance of red pine. Int. J. Wildl. Fire 3: 241–247.

    Article  Google Scholar 

  • Flannigan, M.D., and Harrington, J.B. 1987. Synoptic conditions during the Porter Lake burning experiment. Climatol. Bull. 21:19–40.

    Google Scholar 

  • Flannigan, M.D., and Harrington, J.B. 1988. Astudy of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada 1953–80. J. Appl. Meteorol. 27:441–452.

    Article  Google Scholar 

  • Flannigan, M.D., and Van Wagner, C.E. 1991. Climate Change and wildfire in Canada. Can. J. For. Res. 21:66–72.

    Google Scholar 

  • Flannigan, M.D., and Wotton, B.M. 2001. Connections-Climate/weather and area burned. In Forest Fires: Behavior and Ecological Effects, eds. E.A. Johnson, and K. Miyanishi, pp. 335–357. San Diego, CA: Academic Press.

    Google Scholar 

  • Flannigan, M.D., Bergeron, Y., Engelmark, O., and Wotton, B.M. 1998. Future wildfire in circumboreal forests in relation to global warming J. Veg. Sci. 9:469–476.

    Article  Google Scholar 

  • Flannigan, M.D., Campbell, I., Wotton, B.M., Carcaillet, C., Richard, P., and Bergeron, Y. 2001. Future fire in Canada’s boreal forest: Paleoecology results, and GCM/RCM simulations. Can. J. For. Res. 31:854–864.

    Article  Google Scholar 

  • Flato, G.M., Boer, G.J., Lee, W.G., McFarlane, N.A., Ramsden, D., Reader, M.C., and Weaver, A.J. 2000. The Canadian Centre for Climate Modelling and Analysis Global Coupled Model and its Climate. Clim. Dyn. 16:451–467.

    Article  Google Scholar 

  • Foster, D.R. 1983. The history and pattern of fire in the boreal forest of southeastern Labrador. Can. J. Bot. 61:2459–2471.

    Google Scholar 

  • Gullett, D.W., and Skinner, W.R. 1992. The state of Canada’s climate: Temperature change in Canada 1895–1991. A state of the Environment Report No. 92-2, Environ. Canada, Ottawa. Ontario.

    Google Scholar 

  • Haines, D.A. 1988. Alower atmosphere severity index for wildland fires. Nat. Wea. Digest 13:23–27.

    Google Scholar 

  • Harrington, J.B., Flannigan, M.D., and Van Wagner, C.E. 1983. A study of the relation of components of the Fire Weather Index System to monthly provincial area burned by wildfire in Canada 1953–80. Can. For. Serv., Petawawa Natl. For. Inst., Inf. Rep. PI-X-25.

    Google Scholar 

  • Heinselman, M.L. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quat. Res. 3:329–382.

    Article  Google Scholar 

  • Hely, C., Flannigan, M.D., Bergeron, Y., and McRae, D. 2001. Role of vegetation and weather on fire behavior in the Canadian Mixedwood boreal forest using two fire behavior prediction systems. Can. J. For. Res. 31:430–441.

    Article  Google Scholar 

  • Hirsch, K.G., and Flannigan, M.D. 1990. Meteorological and fire behavior characteristics of the 1989 fire season in Manitoba, Canada. International Conference on Forest Fire Research, Coimbra, Portugal. pp. B.06-1–B.06-16.

    Google Scholar 

  • Horel, J.D., and Wallace, J.M. (1981). Planetary-scale atmospheric phenomena associated with the southern oscillation. Mon. Wea. Rev. 109:813–829.

    Article  Google Scholar 

  • Hu, F.S., Brubaker, L.B., and Anderson, P.M. 1993. A 12,000 year record of vegetation change and soil development from Wien Lake, central Alaska. Can. J. Bot. 71: 1133–1142.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 2001. Climate Change 2001: Impacts, Adaptation, and Vulnerability, eds. J.J. McCarthy, O.F. Canziani, N.A. Leary, D.J. Dokken, and K.S. White. Cambridge: Cambridge University Press.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 1998. The Regional Impacts of Climate Change: An Assessment of Vulnerability. Cambridge: Cambrige University Press.

    Google Scholar 

  • Johnson, E.A. 1992. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest. Cambridge: Cambridge University Press.

    Google Scholar 

  • Johnson, E.A., and Larsen, C.P.S. 1991. Climatically induced change in fire frequency in the southern Canadian Rockies. Ecol. 72:194–201.

    Google Scholar 

  • Johnson, E.A., and Wowchuk, D.R. 1993. Wildfires in the southern Canadian Rocky Mountians and their relationship to mid-tropospheric anomalies. Can. J. For. Res. 23: 1213–1222.

    Google Scholar 

  • Johnson, E.A., Fryer, G.I., and Heathcott, M.J. 1990. The influence of man and climate on frequency of fire in the interior wet belt forest, British Columbia. J. Ecol. 78: 403–412.

    Google Scholar 

  • Jones, E.A., Reed, D.D., Mroz, G.D., Liechty, H.O., and Cattelino, P.J. 1993. Climate stress as a precursor to forest decline: Paper birch in northern Michigan, 1985–1990. Can. J. For. Res. 23:229–233.

    Google Scholar 

  • Kasischke, E.S., Christensen, N.L., and Stocks, B.J. 1995. Fire, global warming, and the carbon balance of the boreal forests. Ecol. Appl. 5:437–451.

    Google Scholar 

  • Khury, P. 1994. The role of fire in the development of Sphagnum-dominated peatlands in western boreal Canada. J. Ecol. 82:899–910.

    Google Scholar 

  • Kirschbaum, M.U.F., and Fishlin, A. 1996. Climate change impacts on forests. In Climate Change 1995. Contributions of Working Group II to the Second Assessment Report of the Intergovernmental Panel of Climate Change, eds. R. Watson, M.C. Zinyowera, and R.H. Moss, pp. 93–129. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kurz, W.A., and Apps, M.J. 1993. Contribution of northern forests to the global C cycle: Canada as a case study. Water Air Soil Pollut. 70:163–176.

    Article  Google Scholar 

  • Kurz, W.A., and Apps, M.J. 1995. An analysis of future carbon budgets of Canadian boreal forests. Water Air Soil Pollut 82:321–331.

    Article  CAS  Google Scholar 

  • Kurz, W.A., and Apps, M.J. 1996. Retrospective assessment of carbon flows in Canadian boreal forests. In Forest Ecosystems, Forest Management, and the Global Carbon Cycle, eds. M.J. Apps and D.T. Price, pp. 173–182. Berlin: Springer-Verlag.

    Google Scholar 

  • Kurz, W.A., Apps, M.J., Stocks, B.J., and Volney, J.A. 1995. Global climate change: Disturbance regimes and biospheric feedbacks of temperate and boreal forests. In Biotic Feedbacks in the Global Climatic System. Will the Warming feed the Warming? eds. G.M. Woodwell and F.T. Mackenzie. pp. 119–133. New York: Oxford University Press.

    Google Scholar 

  • Kurz, W.A., Apps, M.J., Webb, T.M., and McNamee, P.J. 1992. The carbon budget of the Canadian forest sector: phase 1. For. Can., North. For. Cent. Inf. Rep. NOR-X-326, Edmonton, AB.

    Google Scholar 

  • Larsen, C.P.S. 1996. Fire and climate dynamics in the boreal forest of northern Alberta, Canada from AD 1850 to 1989. Holocene 6:449–456.

    Google Scholar 

  • Lashof, D.A. 1989. The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric trace gases and climate change. Clim. Change 14:213–242.

    Article  CAS  Google Scholar 

  • Lupo, A.R., Oglesby, R.J., and Mokhov I.I. 1997. Climatological features of blocking anticyclones: A study of Northern Hemisphere CCM1 model blocking events in present-day and couble CO2 concentration atmosphere. Clim. Dyn. 13:181–195.

    Article  Google Scholar 

  • MacDonald, G.M., Larsen, C.P.S., Szeicz, J.M., and Moser, K.A. 1991. The reconstruction of boreal forest fire history from lake sediments: A comparison of charcoal, pollen, sedimentological, and geochemical indices. Quat. Sci. Rev. 10:53–71.

    Article  Google Scholar 

  • Malanson, G.P. 1987. Diversity, stability, and resilience: effects of fire regime. In The role of Fire in Ecological Systems. ed. L. Trabaud, pp. 49–63. The Hague: SPB Academic Publishing.

    Google Scholar 

  • Martin, P. 1993. Vegetation responses and feedbacks to climate: A review of models and processes. Clim. Dyn. 8:201–210.

    Article  Google Scholar 

  • Mearns, L.O., Schneider, S.H., Thompson, S.L., and McDaniel, L.R. 1989. Climate variability statistics from General Circulation Models as applied to climate change analysis. In Natural Areas Facing Climate Change, ed. G.P. Malanson, pp. 51–73. The Hague: SPB Academic Publishing.

    Google Scholar 

  • Merrill, D.F., and Alexander, M.E. 1987. Glossary of Forest Fire Management Terms, 4th ed. National Research Council of Canada, Canadian Committee on Forest Fire Management. NRCC No. 26516.

    Google Scholar 

  • Newark, M.J. 1975. The relationship between forest fire occurrence and 500 mb ridging. Atmos. 13:26–33.

    Google Scholar 

  • Nichols, H. 1967. Pollen diagrams form sub-Arctic central Canada. Science 155: 1665–1668.

    PubMed  Google Scholar 

  • Nimchuk, N. 1983. Wildfire behavior associated with upper ridge breakdown. Alta. Energy and Nat. Resour., For. Serv,. Edmonton, Alta. ENR Rep. No. T/50.

    Google Scholar 

  • Oechel, W.C., Hastings, S.J., Vourlitis, G., Jenkins, M., Riechers, G., and Grulke, N. 1993. Recent changes of arctic tundra ecosystems from a net carbon sink to a source. Nature 361:520–526.

    Article  Google Scholar 

  • O’Neill, E.G. 1994. Responses of soil biota to elevated atmospheric carbon dioxide. Plant Soil 165:55–65.

    CAS  Google Scholar 

  • Overpeck, J.T., Rind, D., and Goldberg, R. 1990. Climate-induced changes in forest disturbance and vegetation. Nature 343:51–53.

    Article  Google Scholar 

  • Pastor, J., and Post, W.M. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2:3–27.

    Article  Google Scholar 

  • Payette, S. 1992. Fire as a controlling process in the North American boreal forest. In A Systems Analysis of the Global Boreal Forest, eds. H. Shugart, R. Leemans, and G.B. Bonan, pp. 144–169. Cambridge: Cambridge University Press.

    Google Scholar 

  • Payette, S., and Gagnon, R. 1985. Late Holocene deforestation and tree regeneration in the forest tundra of Québec. Nature 313:570–572.

    Article  Google Scholar 

  • Payette, S., Morneau, C., Sirois, L., and Desponts, M. 1989. Recent fire history of the northern Québec biomes. Ecol. 70:656–673.

    Google Scholar 

  • Potter, B.E. 1996. Atmospheric properties associated with large wildfires. Int. J. Wildl. Fire 6:71–76.

    Article  Google Scholar 

  • Price, C., and Rind, D. 1994. The impact of a 2 ¥ CO2 climate on lightning-caused fires. J. Clim. 7:1484–1494.

    Article  Google Scholar 

  • Pyne, S.J. 1997. Vestal Fire: An Environmental History, Told through Fire, of Europe and Europe’s Encounter with the World. Seattle: University of Washington Press.

    Google Scholar 

  • Quintilio, D., Fahnestock, G.R., and Dube, D.E. 1977. Fire behaviour in upland Jack Pine: The Darwin Lake Project. Environ. Can.. Can. For. Serv., Northern For. Res. Centre, Inf. Rep. NOR-X-174.

    Google Scholar 

  • Reed, W.J., Larsen, C.P.S., Johnson, E.A., and MacDonald, G.M. 1998. Estimation of temporal variations in historical fire frequency from time-since-fire map data. For. Sci. 44:465–475.

    Google Scholar 

  • Reynolds, J.F., Kemp, P.R., Acock, B., Chen, J.-L., and Moorhead, D.L. 1996. Progress, limitations, and challenges in modeling the effects of elevated CO2 on plants and ecosystems. In Carbon Dioxide and Terrestrial Ecosystems, eds. G.W. Koch, and H.A. Mooney, pp. 347–380. San Diego, CA: Academic Press.

    Google Scholar 

  • Rizzo, B., and Wilken, E. 1992. Assessing the sensitivity of Canada’s forests to climatic change. Clim. Change 21:37–55.

    Article  Google Scholar 

  • Ryan, M.G. 1991. Effects of climate change on plant respiration. Ecol. Appl. 1:157–167.

    Google Scholar 

  • Schaefer, V.J. 1957. The relationship of jet streams to forest wildfires. J. For. 55:419–425.

    Google Scholar 

  • Schroeder, M.J., and others. 1964. Synoptic weather types associated with critical fire weather. USDA Forest Service, Pacific Southwest Forest Exp. Stn., Berkeley, CA, 492p.

    Google Scholar 

  • Sirois, L., and Payette, S. 1991. Reduced postfire tree regeneration along a boreal forest-forest-tundra transect in northern Quebec. Ecology 72:619–627.

    Google Scholar 

  • Skinner, W.R., Stocks, B.J., Martell, D.L., Bonsal, B., and Shabbar, A. 1999. The association between circulation anomalies in the mid-troposphere and area burned by wildland fire in Canada. Theor. App. Clim. 63:89–105.

    Article  Google Scholar 

  • Smith, T.M., and Shugart, H.H. 1993a. The transient response of carbon storage to a perturbed climate. Nature 361:523–526.

    Article  Google Scholar 

  • Smith, T.M., and Shugart, H.H. 1993b. The potential response of global terrestrial carbon storage to a climate change. Water Air Soil Pollut. 70:629–642.

    Article  Google Scholar 

  • Smith, T.M., Cramer, W.P., Dixon, R.K., Neilson, R.P., and Solomon, A.M. 1993. The global terrestrial carbon cycle. Water Air Soil Pollut. 70:19–37.

    Article  CAS  Google Scholar 

  • Solomon, A.M., and Leemans, R. 1989. Forest dieback inevitable if climate changes. Int. Inst. Appl. Syst. Anal., Luxemburg, Austria. IIASA Options.

    Google Scholar 

  • Solomon, A.M., and Leemans, R. 1997. Boreal forest carbon stocks and wood supply: Past, present and future responses to changing climate, agriculture and species availability. Agric. For. Met. 84:137–151.

    Article  Google Scholar 

  • Solomon, A.M., Prentice, I.C., Leemans, R., and Cramer, W.P. 1993. The interaction of climate and land use in future terrestrial carbon storage and release. Water Air Soil Pollut. 70:595–614.

    Article  Google Scholar 

  • Stocks, B.J. 1975. The 1974 wildfire situation in northwestern Ontario. Can. For. Serv., Great Lakes Forest Res. Centre, Inf. Rep. O-X-232.

    Google Scholar 

  • Stocks, B.J. 1987. Fire potential in the spruce-budworm damaged forests of Ontario. For Chron. 63:8–14.

    Google Scholar 

  • Stocks, B.J. 1991. The extent and impact of forest fires in northern circumpolar countries. In Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, ed. J.S. Levine, pp. 197–202. Cambridge: MIT Press.

    Google Scholar 

  • Stocks, B.J., and Walker, J.D. 1973. Climatic conditions before and during four significant forest fire situations in Ontario. Can. For. Serv., Great Lakes Forest Res. Centre, Inf. Rep. O-X-187.

    Google Scholar 

  • Stocks, B.J., Lee, B.S., and Martell, D.L. 1996. Some potential carbon budget implications of fire management in the boreal forest. In Forest Ecosystems, Forest Management and Global Carbon Cycle, eds. M.J. Apps, and D.T. Price, pp. 89–96. NATO ASI Series Vol. I 40. Berlin: Springer.

    Google Scholar 

  • Stocks, B.J., Fosberg, M.A., Lynham, T.J., Mearns, L., Wotton, B.M., Yang, Q., Jin, J.-Z., Lawrence, K., Hartley, G.R., Mason, J.A., and McKenney, D.W. 1998. Climate change and forest fire potential in Russian and Canadian boreal forests. Clim. Change 38:1–13.

    Article  Google Scholar 

  • Stocks, B.J., Lawson, B.D., Alexander, M.E., Van Wagner, C.E., McAlpine, R.S., Lynham, T.J., and Dubé, D.E. 1989. The Canadian Forest Fire Danger Rating System: an Overview. For. Chron. 65:450–457.

    Google Scholar 

  • Swetnam, T.W. 1993. Fire history and climate change in giant sequoia groves. Science 262:885–889.

    PubMed  Google Scholar 

  • Thomas, G., and Rowntree, P.R. 1992. The boreal forests and climate. Q.J.R. Meteorol Soc. 118:469–497.

    Article  Google Scholar 

  • Tolonen, K. 1983. The post-glacial fire record. In The Role of Fire in Northern Circumpolar Ecosystems, eds. W.R. Wein, and D.A. MacLean, pp. 21–44. New York: Wiley.

    Google Scholar 

  • Turner, J.A. 1970. Hours of sunshine and fire season severity over the Vancouver Forest District. For. Chron. 46:106–111.

    Google Scholar 

  • Vance, R.E., Emerson, D., and Habgood, T. 1983. A mid-Holocene record of vegetative change in central Alberta. Can. J. Earth Sci. 20:364–376.

    Google Scholar 

  • Van Cleve, K., Chapin, F.S., III., Flanagan, P.W., Viereck, L.A., and Dyrness, C.T. 1986. Forest Ecosystems in the Alaskan Taiga. Ecological Studies 57. New York: Springer.

    Google Scholar 

  • Van Wagner, C.E. 1977. Effect of slope on fire spread. Can. For. Serv., Bi-Mon. Res. Notes 33:7–8.

    Google Scholar 

  • Van Wagner, C.E. 1987. The development and structure of the Canadian Forest Fire weather index system. Canadian Forest Service, Forest Tech. Rep. 35, Ottawa, Ontario.

    Google Scholar 

  • Weber, M.G., and Flannigan, M.D. 1997. Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. Environ. Rev. 5:145–166.

    Article  CAS  Google Scholar 

  • Weber, M.G., and Stocks, B.J. 1998. Forest fires and sustainability in the boreal forests of Canada. Ambio 27:545–550.

    Google Scholar 

  • Weeks, E.R., Tian, Y., Urbach, J.S., Ide, K., Swinney, H.L., and Ghil, M. 1997. Transitions between blocked and zonal flows in a rotating annulus with topography. Science 278:1598–1601.

    Article  CAS  PubMed  Google Scholar 

  • Weir, J.M.H., and Johnson, E.A. 1998. Effects of escaped settlement fires and logging on forest composition in the mixedwood boreal forest. Can. J. For. Res. 28:459–467.

    Article  Google Scholar 

  • Weir, J.M.H., Johnson, E.A., and Miyanishi, K. 2000. Fire frequency and the spatial age mosaic of the mixed-wood boreal in western Canada. Ecol. Appl. 10:1162–1177.

    Google Scholar 

  • Whelan, R.J. 1995. The Ecology of Fire. Cambridge: Cambridge University Press.

    Google Scholar 

  • Winkler, M.G. 1985. Charcoal analysis for paleoenvironmental interpretation: a chemical assay. Quat. Res. 23:313–326.

    Article  Google Scholar 

  • Wotton, B.M., and Flannigan, M.D. 1993. Length of the fire season in a changing climate. For. Chron. 69:187–192.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Flannigan, M., Stocks, B., Weber, M. (2003). Fire Regimes and Climatic Change in Canadian Forests. In: Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W. (eds) Fire and Climatic Change in Temperate Ecosystems of the Western Americas. Ecological Studies, vol 160. Springer, New York, NY. https://doi.org/10.1007/0-387-21710-X_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-21710-X_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95455-4

  • Online ISBN: 978-0-387-21710-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics