Skip to main content

Genes and Proteins Involved in Nickel-Dependent Hydrogenase Expression

  • Chapter
Biochemistry and Physiology of Anaerobic Bacteria
  • 518 Accesses

Conclusion

The seemingly simple process of hydrogen activation by Ni-containing hydrogenases requires an enzyme with complex redox transition attributes and precision with respect to synthesis of its metal center. The maturation of these enzymes requires a source of nickel oftentimes acquired by concentration of the metal against a gradient, and a battery of maturation accessory proteins to ensure proper metal mobilization and incorporation. Some of the maturation proteins associate with immature hydrogenase during the process, and accessory proteins have roles ranging from sequestering/storing of nickel to serving as chaperones to maintain proper folding presumably during metallocenter incorporation into the large subunit of hydrogenase. The properties and roles of some Ni-metabolizing hydrogenase accessory proteins have similarities to the maturation proteins needed for other nickel-containing enzymes. Indeed, in the gastric pathogen H. phlori, some of the hydrogenase maturation proteins serve the Ni-dependent maturation of urease as well as that for hydrogenase. Sensor-regulator NiFe-hydrogenases are sometimes used to ensure that the primary hydrogenase involved in hydrogen-oxidizing energy generation is synthesized only when the proper redox environment (such as low oxygen and presence of hydrogen) is encountered. Due to the similarities in the mechanisms of Ni-enzyme maturation among different bacteria and among different Ni-enzyme sinks (urease, hydrogenase, carbon monoxide dehy-drogenase), an integrated picture of the requirements for Ni-enzyme maturation should be anticipated within the next few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albracht SP. 1994. Nickel hydrogenases: in search of the active site. Biochim Biophys Acta 1188:167–204.

    Article  PubMed  Google Scholar 

  • Alm RA, Ling LS, Moir DT, et al. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–80.

    Article  ADS  PubMed  Google Scholar 

  • Black LK, Maier RJ. 1995. IHF-and RpoN-dependent regulation of hydrogenase expression in Bradyrhizobium japonicum. Mol Microbiol 16:405–13.

    Article  CAS  PubMed  Google Scholar 

  • Black LK, Fu C, Maier RJ. 1994. Sequence and characterization of hupU and hupV genes of Bradyrhizobium japonicum encoding a possible nickel-sensing complex involved in hydrogenase expression. J Bacteriol 176:7102–6.

    CAS  PubMed  Google Scholar 

  • Brito B, Martinez M, Fernandez D, et al. 1997. Hydrogenase genes from Rhizobium leguminosarum bv. vicae are controlled by the nitrogen fixation regulatory protein NifA. Proc Natl Acad Sci USA 94:6019–24.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Brito B, Monza J, Imperial J, et al. 2000. Nickel availability and HupSL activation by heterologous regulators limit symbiotic expression of the Rhizobium leguminosarum bv. viciae hydrogenase system in hup rhizobia. Appl Environ Microbiol 66:937–42.

    Article  CAS  PubMed  Google Scholar 

  • Brito B, Palacios JM, Hidalgo E, et al. 1994. Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. bacteroids by affecting the processing of the hydrogenase structural subunits. J Bacteriol 176:5297–303.

    CAS  PubMed  Google Scholar 

  • Colombo MV, Gutierrez D, Palacios JM, et al. 2000. A novel autoregulation mechanism of fnrN expression in Rhizobium leguminosarum bv viciae. Mol Microbiol 36:477–86.

    Article  CAS  PubMed  Google Scholar 

  • Colpas GJ, Brayman TG, Ming L-J, Hausinger RP. 1999. Identification of metalbinding residues in the Klebsiella aerogenes urease nickel metallochaperone, UreE. Biochemistry 38:4078–88.

    Article  CAS  PubMed  Google Scholar 

  • Dalton DA, Russell SA, Evans HJ. 1988. Nickel as a micronutrient element for plants. Biofactors 1:11–16.

    CAS  PubMed  Google Scholar 

  • Drapal N, Böck A. 1998. Interaction of the hydrogenase accessory protein HypC with HycE, the large subunit of Escherichia coli hydrogenase 3 during enzyme maturation. Biochemistry 37:2941–8.

    Article  CAS  PubMed  Google Scholar 

  • Du L, Tibelius KH. 1994. The hupB gene of the Azotobacter chroococcum hydrogenase gene cluster is involved in nickel metabolism. Curr Microbiol 28:21–4.

    Article  CAS  Google Scholar 

  • Durmowicz MC, Maier RJ. 1997. Roles of HoxX and HoxA in biosynthesis of hydrogenase in Bradyrhizobium japonicum. J Bacteriol 179:3676–82.

    CAS  PubMed  Google Scholar 

  • Durmowicz MC, Maier RJ. 1998. The FixK2 protein is involved in regulation of symbiotic hydrogenase expression in Bradyrhizobium japonicum. J Bacteriol 180: 3253–6.

    CAS  PubMed  Google Scholar 

  • Eitinger T, Friedrich B. 1994. A topological model for the high-affinity nickel transport of Alcaligenes eutrophus. Mol Microbiol 12:1025–32.

    Article  CAS  PubMed  Google Scholar 

  • Eitinger T, Wolfam L, Degen O, Anthon C. 1997. A Ni2+ binding motif is the basis of high affinity transport of the Alcaligenes eutrophus nickel permease. J Biol Chem 272:17139–44.

    Article  CAS  PubMed  Google Scholar 

  • Elsen S, Colbeau A, Chabert J, Vignais PM. 1996. The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus. J Bacteriol 178:5174–81.

    CAS  PubMed  Google Scholar 

  • Elsen S, Richaud R, Colbeau A, Vignais PM. 1993. Sequence analysis and interposon mutagenesis of the hupT gene, which encodes a sensor protein involved in repression of hydrogenase synthesis in Rhodobacter capsulatus. J Bacteriol 175:7404–12.

    CAS  PubMed  Google Scholar 

  • Friedrich B, Schwartz E. 1993. Molecular biology of hydrogen utilization in aerobic chemolithotrophs. Annu Rev Microbiol 47:351–83.

    Article  CAS  PubMed  Google Scholar 

  • Fu C, Maier RJ. Nucleotide sequences of two hydrogenase-related genes (hypA and hypB) from Bradyrhizobium japonicum, one of which (hypB) encodes an extremely histidine-rich region and guanine nucleotide-binding domains. Biochem Biophys Acta 1184:135–8.

    Google Scholar 

  • Fu C, Javedan S, Moshiri F, Maier RJ. 1994. Bacterial genes involved in incorporation of nickel into a hydrogenase enzyme. Proc Natl Acad Sci USA. 91:5099–103.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Fu C, Olson JW, Maier RJ. 1995. HypB protein of Bradyrhizobium japonicum is a metal-binding GTPase capable of binding 18 divalent nickel ions per dimer. Proc Natl Acad Sci USA 92:2333–7.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Hausinger R. 1994. Nickel enzymes in microbes. Sci Total Environ 148:157–66.

    Article  CAS  PubMed  Google Scholar 

  • Hausinger RP. 1997. Metallocenter assembly in nickel-containing enzymes. J Biol Inorg Chem 2:279–86.

    Article  CAS  Google Scholar 

  • Hernando Y, Palacios J, Imperial J, Ruiz-Argüeso T. 1998. Rhizobium leguminosarum bv. viciae hypA gene is specifically expressed in pea (Pisum sativum) bacteroids and required for hydrogenase activity and processing. FEMS Micro-bial Lett 169:295–302.

    Article  CAS  Google Scholar 

  • Jocobi A, Rossmann R, Böck A. 1992. The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch Microbiol 158:444–51.

    Google Scholar 

  • Kerby RL, Ludden PW, Roberts GD. 1997. In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of cooCTJ. J Bacteriol 179:2259–66.

    CAS  PubMed  Google Scholar 

  • Kim H, Maier RJ. 1990. Transcriptional regulation of hydrogenase synthesis by nickel in Bradyrhizobium japonicum. J Biol Chem 265:18729–32.

    CAS  PubMed  Google Scholar 

  • Kim H, Yu C, Maier RJ. 1991. Common cis-acting region responsible for transcriptional regulation of Bradyrhizobium japonicum hydrogenase by nickel, oxygen, and hydrogen. J Bacteriol 173:3993–9.

    CAS  PubMed  Google Scholar 

  • Kleihues L, Lenz O. Bernhard M, et al. 2000. The H2 sensor of Ralstonia eutropha is a member of the subclass of regulatory (NiFe) hydrogenases. J Bacteriol 182:2716–24.

    Article  CAS  PubMed  Google Scholar 

  • Lenz O, Friedrich B. 1998. A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. Proc Natl Acad Sci USA 95:12474–9.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Lenz O, Strack A, Tran-Betcke A, Friedrich B. 1997. A hydrogen-sensing system in transcriptional regulation of hydrogenase gene expression in Alcaligenes species. J Bacteriol 179:1655–63.

    CAS  PubMed  Google Scholar 

  • Maier T, Böck A. 1996b. Generation of active (NiFe) hydrogenase in vitro from a nickel-free precursor form. Biochemistry 35:10089–93.

    Article  CAS  PubMed  Google Scholar 

  • Maier T, Böck A. 1996a. Nickel incorporation into hydrogenases. In: Hausinger RR, Eichhorn GL, Marzilli LG, editors. Advances in inorganic biochemistry: mechanisms of metallocenter assembly. New York: VHC Publishers. 173–92.

    Google Scholar 

  • Maier RJ, Triplett EW. 1996. Toward more productive, efficient, and competitive nitrogen-fixing symbiotic bacteria. Crit Revs Plant Sci 15:191–234.

    Google Scholar 

  • Maier RJ, Fu C, Gilbert J, et al. 1996. Hydrogen uptake hydrogenase in Helicobacter pylori. FEMS Microbiol Lett 141:71–6.

    Article  CAS  PubMed  Google Scholar 

  • Maier RJ, Olson JW, Fox J. 1997. Nickel-dependent expression and maturation of hydrogenase. In: Ludden PW. Burris JE, editor. Biosynthesis and function of metal clusters for enzymes: the 25th Steenbock Symposium Proceedings. Madison: University of Wisconsin. p 133–42.

    Google Scholar 

  • Maier T, Jacobi A, Sauter M, Böck A. 1993. The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein. J Bacteriol 175:630–5.

    CAS  PubMed  Google Scholar 

  • Maier T, Lottspeich F, Böck A. 1995. GTP hydrolysis by HypB is essential for nickel insertion into hydrogenases of Escherichia coli. Eur J Biochem 230:133–8.

    Article  CAS  PubMed  Google Scholar 

  • Magalon A, Bock A. 2000. Analysis of the HypC-hycE complex, a key intermediate in the assembly of the metal center of the Escherichia coli hydrogenase 3. J Biol Chem 275:21114–20.

    Article  CAS  PubMed  Google Scholar 

  • Maroney MJ. 1999. Structure/function relationships in nickel metallobiochemistry. Curr Opin Chem Biol 3:188–99.

    Article  CAS  PubMed  Google Scholar 

  • McGee DJ, Mobley HL. 1999. Mechanisms of Helicobacter pylori infection: bacterial factors. Curr Topics Microbiol Immunol 241:155–180.

    CAS  Google Scholar 

  • McGee DJ, May CA, Garner RM, et al. 1999. Isolation of Helicobacter pylori genes that modulate urease activity. J Bacteriol 181:2477–84.

    CAS  PubMed  Google Scholar 

  • Menon AL, Robson RL. 1994. In vivo and in vitro nickel-dependent processing of the (NiFe) hydrogenase in J Bacteriol 176:291–5.

    CAS  PubMed  Google Scholar 

  • Mobley HLT, Garner RM, Bauerfeind P. 1995. Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Mol Microbiol 16:97–109.

    Article  CAS  PubMed  Google Scholar 

  • Moncrief MBC, Hausinger RP. 1996. Purification and activation properties of UreD-UreF-Urease apoprotein complexes. J Bacteriol 178:5417–21.

    CAS  PubMed  Google Scholar 

  • Navarro C, Wu LF, Mandrand-Berthelot MA. 1993. The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol 9:1181–91.

    Article  CAS  PubMed  Google Scholar 

  • Olson JW, Maier RJ. 1997. The sequences of hypF, hypC and hypD complete the hyp gene cluster required for hydrogenase activity in Bradyrhizobium japonicum. Gene 199:93–99.

    Article  CAS  PubMed  Google Scholar 

  • Olson JW, Maier RJ. 2000. Dual roles of B. japonicum nickelin protein in nickel storage and GTP-dependent Ni mobilization. J Bacteriol 182:1702–5.

    Article  CAS  PubMed  Google Scholar 

  • Olson JW, Fu C, Maier RJ. 1997. The HypB protein from Bradyrhizobium japonicum can store nickel and is required for the nickel-dependent transcriptional regulation of hydrogenase. Mol Microbiol 24:119–28.

    Article  CAS  PubMed  Google Scholar 

  • Olson JW, Mchta NS, Maier RJ. 2001. Requirement of nickel metabolism proteins HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori. Mol Microbiol 39:176–182.

    Article  CAS  PubMed  Google Scholar 

  • Pierik AJ, Smelz M, Lenz O, et al. 1998. Characterization of the active site of a hydrogen sensor from Alcaligenes eutrophus. FEBS Lett 438:231–5.

    Article  CAS  PubMed  Google Scholar 

  • Rey L, Imperial J, Palacios JM, Ruiz-Argüeso T. 1994. Purification of Rhizobium leguminosarum HypB, a nickel-binding protein required for hydrogenase synthesis. J Bacteriol 176:6066–73.

    CAS  PubMed  Google Scholar 

  • Schwartz E, Buhrke T, Gerischer U, Friedrich B. 1999. Positive transcriptional feedback controls hydrogenase expression in Alcaligenes eutrophus H16. J Bacteriol 181:5684–92.

    CAS  PubMed  Google Scholar 

  • Soriano A, Hausinger RP. 1999. GTP-dependent activation of urease apoprotein in complex with the UreD, UreF, and UreG accessory proteins. Proc Natl Acad Sci USA 96:11140–4.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Tibelius KH, Du L, Tito D, Stejskal F. 1993. The Azotobacter chroococcum hydrogenase gene cluster: sequences and genetic analysis of four accessory genes, hup A, hupB, hupY, and hup C. Gene 127:53–61.

    Article  CAS  PubMed  Google Scholar 

  • Tomb JF, White O, Kerlavage AR, et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–47.

    Article  CAS  ADS  PubMed  Google Scholar 

  • van Soom C, de Wilde D, Vanderleyden J. 1997. HoxA is a transcriptional relator for expression of the hup structural genes in free-living Bradyrhizobium japonicum. Mol Microbiol 23:967–77.

    Article  PubMed  Google Scholar 

  • van Soom C, Lerouge I, Vanderleyden J, et al. 1999. Identification and characterization of hupT, a gene involved in negative regulation of hydrogen oxidation in Bradyrhizobium japonicum. J Bacteriol 181:5085–9.

    PubMed  Google Scholar 

  • Vignais PM, Dimon B, Zorin NA, et al. 1997. HupUV proteins of Rhodobacter capsulatus can bind H2: evidence from the H-D reaction. J Bacteriol 179:290–2.

    CAS  PubMed  Google Scholar 

  • Waugh R, Boxer DH. 1986. Pleiotropic hydrogenase mutants of Escherichia coli K-12: growth in the presence of nickel can restore hydrogenase activity. Biochimie 68:157–66.

    Article  CAS  PubMed  Google Scholar 

Suggested Reading

  • Rey L, Murillo J, Hernando Y, et al. 1993. Molecular analysis of a microaerobically induced operon required for hydrogenase synthesis in Rhizobium leguminosarum biovar vicae. Mol Microbiol 8:471–81.

    Article  CAS  PubMed  Google Scholar 

  • Vignais PM, Billoud B, Meyer J. 2001. Classification and phyloseny of hydrogenases. FEMS Microbiol Rev 25:455–501.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Maier, R.J., Olson, J., Mehta, N. (2003). Genes and Proteins Involved in Nickel-Dependent Hydrogenase Expression. In: Ljungdahl, L.G., Adams, M.W., Barton, L.L., Ferry, J.G., Johnson, M.K. (eds) Biochemistry and Physiology of Anaerobic Bacteria. Springer, New York, NY. https://doi.org/10.1007/0-387-22731-8_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-22731-8_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95592-6

  • Online ISBN: 978-0-387-22731-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics