Skip to main content

Abstract

The theoretical and numerical background for the simulation of hysteresis properties and dynamic magnetization processes is reviewed. Nanomagnetic particle arrays may be well approximated by a modified Stoner-Wohlfarth theory which takes into account interactions owing to particle agglomeration. Energy minimization techniques are applied to calculate remanence enhancement in exchange spring permanent magnets. The influence of damping on the magnetization reversal time is discussed and examples of spin wave excitations during the switching of NiFe nano-elements are given. Finally, methods for the simulation of thermal magnetization noise and the thermal stability of magnetic states are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. J. Kirk, J. N. Chapman, and C. D. W. Wilkinson, Appl. Phys. Lett. 71, 539 (1997).

    Article  ADS  Google Scholar 

  2. E. D. Dahlberg and J. G. Zhu, Physics Today 48, 34 (1995).

    Article  Google Scholar 

  3. D. Kinderlehrer and L. Ma, IEEE Trans. Magn. 30, 4380 (1994).

    Article  ADS  Google Scholar 

  4. L. He, W. D. Doyle, L. Varga, H. Fujiwara, and P. J. Flanders, J. Magn. Magn. Mater 155, 6 (1996).

    Article  ADS  Google Scholar 

  5. A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, and E. E. Fullerton, J. Phys. D: Appl. Phys. 35, R157 (2002).

    Article  ADS  Google Scholar 

  6. T. L. Gilbert, Phys. Rev. 100, 1243 (1955).

    Google Scholar 

  7. R. W. Harrell, IEEE Trans. Magn. 37, 533 (2001).

    Article  ADS  Google Scholar 

  8. E. C. Stoner and E. P. Wohlfarth, Phil. Trans. R. Soc. 240, 599 (1948).

    Article  MATH  ADS  Google Scholar 

  9. S. Sun, E. E. Fullerton, D. Weller, and C. B. Murray, IEEE Trans. Magn. 37, 1239 (2001).

    Article  ADS  Google Scholar 

  10. Z. R. Dai, S. Sun, and Z. L. Wang, Nanoletters 1, 443 (2001).

    ADS  Google Scholar 

  11. T. Schrefl, G. Hrkac, D. Suess, W. Scholz, and J. Fidler, J. Appl. Phys. 93, 7041 (2003).

    Article  ADS  Google Scholar 

  12. N. Smith and P. Arnett, Appl. Phys. Lett. 78, 1448 (2001).

    Article  ADS  Google Scholar 

  13. H. N. Bertram, V. L. Safonov, and Z. Jin, IEEE Trans. Magn. 38, 2514 (2002).

    Article  ADS  Google Scholar 

  14. J.-G. Zhu, J. Appl. Phys. 91, 7273 (2002).

    Article  ADS  Google Scholar 

  15. N. D. Rizzo, M. DeHerrera, J. Janesky, B. Engel, J. Slaughter, and S. Tehrani, Appl. Phys. Lett. 80, 2335 (2002).

    Article  ADS  Google Scholar 

  16. D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999).

    Article  ADS  Google Scholar 

  17. W. F. Brown, IEEE Trans. Magn. Magn. 15, 1196 (1979).

    Article  ADS  Google Scholar 

  18. A. Lyberatos and R. W. Chantrell, J. Appl. Phys. 73, 6501 (1993).

    Article  ADS  Google Scholar 

  19. J. L. Garcia-Palacios and F. J. Lazaro, Phys. Rev. B 58, 14937 (1998).

    Article  ADS  Google Scholar 

  20. G. Henkelman and H. Jónsson, J. Chem. Phys. 113, 9978 (2000).

    Article  ADS  Google Scholar 

  21. R. Dittrich, T. Schrefl, D. Suess, W. Scholz, H. Forster, and J. Fidler, J. Magn. Magn. Mater. 250, 12 (2002)

    Article  ADS  Google Scholar 

  22. A. Aharoni, “Introduction to the Theory of Ferromagnetism”, Oxford University Press, New York 1996.

    Google Scholar 

  23. H. Kronmüller, K.-D. Durst, and G. Martinek, J. Magn. Magn. Mater. 69, 149 (1987).

    Article  ADS  Google Scholar 

  24. M. Fähnle and H. Kronmüller, “Micromagnetism and the Microstructure of Ferromagnetic Solids”, Cambridge University Press, Cambridge 2003.

    Google Scholar 

  25. C. Kittel, Phys. Rev. 70, 965 (1946).

    Article  ADS  Google Scholar 

  26. J. N. Chapman, P. R. Aitchison, K. J. Kirk, S. McVitie, J. C. S. Kools, and M. F. Gillies, J. Appl. Phys. 83, 5321 (1998).

    Article  ADS  Google Scholar 

  27. J. C. Mallinson, IEEE Trans. Magn. 36, 1976 (2000).

    Article  ADS  Google Scholar 

  28. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).

    Article  ADS  Google Scholar 

  29. G. Herzer, IEEE Trans. Magn. 26, 1397 (1990).

    Article  ADS  Google Scholar 

  30. T. Schrefl, H. Kronmüller, and J. Fidler, Phys. Rev. B. 49, 6100 (1994).

    Article  ADS  Google Scholar 

  31. A = 10.8 pJ/m estimated from the Curie temperature and published values of A in CoPt in “Permanent Magnetism” R. Skomski and J. M. D. Coey, IOP Publishing, Bristol 1999.

    Google Scholar 

  32. F. T. Parker, M. W. Foster, D. T. Margulies, and A. E. Berkowitz, Phys. Rev. B 47, 7885 (1993).

    Article  ADS  Google Scholar 

  33. R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993).

    Article  ADS  Google Scholar 

  34. P. Mohn, “Magnetism in the Solid State, an Introductory Course”, Springer, Vienna 2002.

    Google Scholar 

  35. C. Kittel, Rev. Mod. Phys. 21, 541 (1949).

    Article  ADS  Google Scholar 

  36. S. Chikazumi, “Physics of Ferromagnetism”, Oxford University Press, New York 1997.

    Google Scholar 

  37. P. R. Weiss, Phys. Rev. 74, 1493 (1948).

    Article  MATH  ADS  Google Scholar 

  38. N. Smith, D. Markham, and D. LaTourette, J. Appl. Phys. 65, 4362 (1989).

    Article  ADS  Google Scholar 

  39. J. D. Livingston, J. Appl. Phys. 57, 4137 (1985).

    Article  ADS  Google Scholar 

  40. T. Schrefl and J. Fidler, J. Magn. Magn. Mater. 111, 105 (1992).

    Article  ADS  Google Scholar 

  41. D. R. Fredkin and T. R. Koehler, IEEE Trans. Magn. 26, 415 (1990).

    Article  ADS  Google Scholar 

  42. H. Forster, T. Schrefl, R. Dittrich, W. Scholz, and J. Fidler, IEEE Trans. Magn. 39, 2513 (2003).

    Article  ADS  Google Scholar 

  43. P. E. Gill, W. Murray, and M. H. Wright, “Practical Optimization”, Academic Press, London 1993.

    Google Scholar 

  44. R. Coehoorn, D. B. De Mooij, and C. De Waard, J. Magn. Magn. Mater. 80, 101(1989).

    Article  ADS  Google Scholar 

  45. E. F. Kneller, IEEE Trans. Magn. 27, 3588 (1991).

    Article  ADS  Google Scholar 

  46. V. Panchanathan, IEEE Trans. Magn. 31, 3605 (1995).

    Article  ADS  Google Scholar 

  47. J. J. Croat, J. Appl. Phys. 81, 4804 (1997).

    Article  ADS  Google Scholar 

  48. W. Bailey, P. Kabos, F. Mancoff, and S. Russek, IEEE Trans. Magn. 37, 1749 (2001).

    Article  ADS  Google Scholar 

  49. R. Kikuchi, J. Appl. Phys. 27, 1352 (1956).

    Article  ADS  Google Scholar 

  50. K. Takano, IEEE Trans. Magn. 40, 257 (2004).

    Article  ADS  Google Scholar 

  51. O. Ertl, T. Schrefl, D. Suess, M. Schabes, J. Magn. Magn. Mater. 290–291, 518 (2005).

    Article  Google Scholar 

  52. A. C. Hindmarsh and L. R. Petzold, Computers in Physics 9, 148 (1995).

    Article  ADS  Google Scholar 

  53. D. Suess, V. Tsiantos, T. Schrefl, J. Fidler, W. Scholz, H. Forster, R. Dittrich, and J. J. Miles, J. Magn. Magn. Mater. 248, 298 (2002).

    Article  ADS  Google Scholar 

  54. M. Kirschner, T. Schrefl, F. Dorfbauer, G. Hrkac, D. Suess, and J. Fidler, J. Appl. Phys. 97, 10E301 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Schrefl, T. et al. (2006). Nanomagnetic Simulations. In: Sellmyer, D., Skomski, R. (eds) Advanced Magnetic Nanostructures. Springer, Boston, MA. https://doi.org/10.1007/0-387-23316-4_4

Download citation

Publish with us

Policies and ethics