Skip to main content

Permittivity, Tunability and Loss in Ferroelectrics for Reconfigurable High Frequency Electronics

  • Chapter
Electroceramic-Based MEMS

Part of the book series: Electronic Materials: Science and Technology ((EMST,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. D. Domenico, D. A. Johnson, and R. H. Pantell, Journal of Applied Physics, 33, 1697, (1962).

    Google Scholar 

  2. O. G. Vendik, E. K. Hollmann, A. B. Kozyrev, and A. M. Prudan, Journal of Supercon-ductivity, 12, 325, (1999).

    Google Scholar 

  3. M. J. Lancaster, J. Powell, and A. Porch, Supercund. Sci. Technol., 11, 1323 (1998).

    Google Scholar 

  4. X. X. Xi, H. C. Li, W. D. Si, A. A. Sirenko, I. A. Akimov, J. R. Fox, A. M. Clark, and J. H. Hao, Journal of Electroceramics, 4, 393, (2000).

    Google Scholar 

  5. F. A. Miranda, F. W. Van Keuls, R. R. Romanofsky, C. H. Mueller, S. Alterovitz, and G. Subramanyam, Integrated Ferroelectrics, 42, 131, (2001).

    Google Scholar 

  6. V. L. Gurevich and A. K. Tagantsev, Adv. Phys., 40, 719, (1991).

    Google Scholar 

  7. S. Gevorgian, E. Carlsson, E. Wikborg, and E. Kollberg, Intergrated Ferroelectrics, 22, 245, (1998).

    Google Scholar 

  8. S. A. Wolf and D. Treger, Integrated Ferroelectrics, 42, 39, (2001).

    Google Scholar 

  9. O. G. Vendik, Ferroelectrics at microwaves (in Russian) (Sovyetskoye Radio, Moscow, 1979).

    Google Scholar 

  10. N. M. Alford, S. J. Penn, A. Templeton, X. Wang, J. C. Gallop, N. Klein, C. Zuccaro, and P. Filhol, IEE Colloquium on Electro-technical ceramics—processing, properties and applications, 9/1, (1997).

    Google Scholar 

  11. S. J. Penn, N. McNAlford, A. Templeton, N. Klein, J. C. Gallop, P. Filhol, and X. Wang, IEE Colloquium on Advances in Passive Microwave Components, 6/1, (1997).

    Google Scholar 

  12. G. Rupprecht and R. O. Bell, Physical Review, 135, A748, (1964).

    Google Scholar 

  13. A. Linz, Physical Review, 91, 753, (1953).

    Google Scholar 

  14. G. A. Smolenskii and V. A. Isupov, Zhurnal Tekhnicheskoi Fiziki, 24, 1375, (1954).

    Google Scholar 

  15. G. S. Khizha, I. B. Vendik, and E. A. Serebryakova, Microwave Phase Shifters Based on p-i-n Diodes (in Russian) (Radio i Svyas, Moscow, 1984).

    Google Scholar 

  16. I. Vendik, O. Vendik, and E. Kollberg, IEEE Trans. Microwave Theory and Techniques, 48, 802, (2000).

    Google Scholar 

  17. A. Deleniv, A. Eriksson, and S. Gevorgian, 2002 IEEE MTT-S digest, 197, (2002).

    Google Scholar 

  18. J. Rao, D. Patel, and V. Krichevsky, IEEE Trans. Antennas and Propagation, 47, 458, (1999).

    Google Scholar 

  19. F. D. Flaviis, N. G. Alexopoulos, and O. M. Stafsudd, IEEE Trans. Microwave Theory Tech., 45, 963, (1997).

    Google Scholar 

  20. O. G. Vendik, L. T. Ter-Martirosyan, A. I. Dedyk, S. F. Karmanenko, and R. A. Chakalov, Ferroelectrics, 144, 33, (1993).

    Google Scholar 

  21. A. Kozyrev, V. Osadchy, A. Pavlov, and L. Sengupta, IEEE MTT-S Digest, 1355, (2000).

    Google Scholar 

  22. B. Acikel, T. R. Taylor, P. F. Hansen, J. S. Speck, and R. A. York, IEEE Microwave and Wireless Components Letters, 12, 237, (2002).

    Google Scholar 

  23. A. Kozyrev, A. Ivanov, A. Prudan, O. Soldatenkov, E. Hollmann, V. Loginov, D. S. Ginley, and T. Rivkin, Integrated Ferroelectrics, 24, 287, (1999).

    Google Scholar 

  24. V. Sherman, K. Astafiev, N. Setter, A. Tagantsev, O. Vendik, I. Vendik, S. Hoffmann-Eifert, U. Bottger, and R. Waser, IEEE Microwave and Wireless Components Letters, 11, 407, (2001).

    Google Scholar 

  25. O. G. Vendik, I. B. Vendik, and V. O. Sherman, Integrated Ferroelectrics, 43, 81, (2002).

    Google Scholar 

  26. I. Vendik, O. Vendik, E. Kollberg, and V. Sherman, IEEE Transactions on Microwave Theory and Techniques, 47, 1553, (1999).

    Google Scholar 

  27. F. A. Miranda, G. Subramanyam, F. W. V. Keuls, R. R. Romanofsky, J. D. Warner, and C. H. Mueller, IEEE Trans. on Microwave Theory And Techniques, 48, 1181, (2000).

    Google Scholar 

  28. A. Kozyrev, A. Ivanov, V. Keis, M. Khazov, V. Osadchy, T. Samoilova, A. Pavlov, G. Koepf, C. Mueller, D. Galt, and T. Rivkin, IEEE MTT-S Digest, 2, 985, (1998).

    Google Scholar 

  29. V. Keis, A. Kozyrev, M. Khazov, J. Sok, and J. Lee, Electronics Letters, 34, 1107, (1998).

    Google Scholar 

  30. B. H. Moeckly and Y. Zhang, IEEE Transaction on Applied Superconductivity, 11, 450, (2001).

    Google Scholar 

  31. I. Vendik, O. Vendik, V. Pleskachev, A. Svishchev, and R. Woerdenweber, IEEE MTT-S Digest, 3, 1461, (2001).

    Google Scholar 

  32. T. B. Samoilova, K. F. Astafiev, T. Rivkin, and D. S. Ginley, Journal of Applied Physics, 90, 5703, (2001).

    Google Scholar 

  33. J. G. Colom, R. A. Rodrigues-Solis, J. Almodovar, and M. Castaneda, Integrated Ferroelectrics, 42, 313, (2002).

    Google Scholar 

  34. C. Weil, P. Wang, H. Downar, J. Wenger, and R. Jakoby, Frequenz, 54, 250, (2000).

    Google Scholar 

  35. J. O. Gentner, P. Gerthsen, N. A. Schmidt, and R. E. Send, J. Appl. Phys., 49, 4585, (1978).

    Google Scholar 

  36. V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics (Nauka, Moscow, 1973).

    Google Scholar 

  37. J. H. Barrett, Phys. Rev., 86, 118, (1952).

    Google Scholar 

  38. O. G. Vendik, L. T. Ter-Martirosyan, and S. P. Zubko, J. Appl. Phys., 84, 993, (1998).

    Google Scholar 

  39. O. G. Vendik, Sov. Phys. Solid state, 14, 849, (1972).

    Google Scholar 

  40. O. G. Vendik and S. P. Zubko, J. Appl. Phys., 82, 4475, (1997).

    Google Scholar 

  41. O. G. Vendik, S. P. Zubko, and M. A. Nikol’ski, J. Appl. Phys., 92, 7448 (2002).

    Google Scholar 

  42. O. Hudak, I. Rychetsky, and J. Petzelt, Ferroelectrics, 208, 429, (1998).

    Google Scholar 

  43. J. W. Liou and B. S. Chiou, Journal of Physics-Condensed Matter, 10, 2773, (1998).

    Google Scholar 

  44. M. Vollman and R. Waser, J. Am. Ceram. Soc., 77, 235 (1994).

    Google Scholar 

  45. K. F. Astafiev, V. O. Sherman, A. K. Tagantsev, and N. Setter, Journal of the European Ceramic Society, 23, 2381 (2003).

    Google Scholar 

  46. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, (Butterworth-Heinemann, 1995).

    Google Scholar 

  47. V. Sherman, A. Tagantsev, K. Astafiev, and N. Setter, to be published, (2004).

    Google Scholar 

  48. J. E. Sipe and R. W. Boyd, Physical Review A, 46, 1614, (1992).

    Google Scholar 

  49. K. W. Yu, P. M. Hui, and D. Stroud, Physical Review B, 47, 14150, (1993).

    Google Scholar 

  50. V. S. Vinogradov, Fiz. Trerd. Tela, 4, 712, (1962).

    Google Scholar 

  51. V. L. Gurevich, Fiz. Tverd. Tela, 21, 3453, (1979).

    Google Scholar 

  52. A. K. Tagantsev, Sov. Phys. JETP, 53, 555, (1981).

    Google Scholar 

  53. K. A. Subbaswamy and D. L. Mills, Phys. Rev. B, 33, 4213, (1986).

    Google Scholar 

  54. A. K. Tagantsev, Sov. Phys. JETP, 59, 1290, (1984).

    Google Scholar 

  55. A. K. Tagantsev, J. Petzelt, and N. Setter, Solid State Commun, 87, 1117, (1993).

    Google Scholar 

  56. V. L. Gurevich, Transport in Phonon Systems (North-Holland, Amsterdam, 1986).

    Google Scholar 

  57. R. Zurmulen, J. Petzelt, S. Kamba, G. Kozlov, A. Volkov, B. Gorshunov, D. Dube, A. Tagantsev, and N. Setter, J. Appl. Phys., 77, 5351, (1995).

    Google Scholar 

  58. I. M. Buzin, Vestn. Mosk. Univ. Fiz. Astron., 18, 70, (1977).

    Google Scholar 

  59. R. Stolen and K. Dransfeld, Phys. Rev., 139, 1295, (1965).

    Google Scholar 

  60. B. Y. Balagurov, V. G. Vaks, and B. I. Shklovskii, Fiz. Tverd. Tela, 12, 89, (1970).

    Google Scholar 

  61. O. G. Vendik, Sov. Phys. Solid State, 17, 1096, (1975).

    Google Scholar 

  62. G. J. Cooms and R. A. Cowley, J. Phys. C, 6, 121, (1973).

    Google Scholar 

  63. A. K. Tagantsev, Sov. Phys. JETP, 50, 948, (1979).

    Google Scholar 

  64. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, London, 1971).

    Google Scholar 

  65. A. Tagantsev, Appl. Phys. Lett., 76, 1182, (2000).

    Google Scholar 

  66. A. K. Tagantsev and K. F. Astafiev, Integrated Ferroelectrics, 39, 251, (2001).

    Google Scholar 

  67. K. F. Astafiev, A. K. Tagantsev, and N. Setter, J. Appl. Phys., 97, (2005), (in press).

    Google Scholar 

  68. L. C. Sengupta, S. Stowell, E. Ngo, M. E. O’Day, and R. Lancto, Integrated Ferroelectrics, 8, 77, (1995).

    Google Scholar 

  69. E. Schlöman, Phys. Rev., 135, A413, (1964).

    Google Scholar 

  70. O. G. Vendik and L. M. Platonova, Sov. Phys. Solid State, 13, 1353, (1971).

    Google Scholar 

  71. B. M. Garin, Sov. Phys. Solid state, 32, 1917, (1990).

    Google Scholar 

  72. C. J. Brennan, Integrated Ferroelectrics, 7, 93, (1995).

    Google Scholar 

  73. J. G. Simmons, J. Phys. Chem. Solids, 32, 2581, (1971).

    Google Scholar 

  74. A. K. Jonscher, Universal relaxation law (Chelsea Dielectrics Press, London, 1996).

    Google Scholar 

  75. J. D. Baniecki, R. B. Laibowitz, T. M. Shaw, P. R. Duncombe, D. A. Neumayer, D. E. Kotecki, H. Shen, and Q. Y. Ma, Appl. Phys. Lett., 72, 498, (1998).

    Google Scholar 

  76. R. Waser, in Science and Technology of Electroceramic Thin Films, vol. 284, NATO ASI; Series E: Applied Science, O. Auciello and R. Waser, Eds., 1995, pp. 223.

    Google Scholar 

  77. Y. Fukuda, K. Numata, K. Aoki, and A. Nishimura, Jpn. J. Appl. Phys., 35, 5178, (1996).

    Google Scholar 

  78. J. Petzelt, T. Ostapchuk, I. Gregora, I. Rychetsk, S. Hoffmann-Eifert, A. V. Pronin, Y. Yuzyuk, B. P. Gorshunov, S. Kamba, V. Bovtun, J. Pokorn, M. Savinov, V. Porokhonskyy, D. Rafaja, P. Vanek, A. Almeida, M. R. Chaves, A. A. Volkov, M. Dressel, and R. Waser, Phys. Rev. B, 64, 184111, (2001).

    Google Scholar 

  79. L. C. Sengupta, S. Stowell, E. Ngo, and S. Sengupta, Integrated Ferroelectrics, 13, 203, (1996).

    Google Scholar 

  80. M. Jain, S. B. Majumder, R. S. Katiyar, D. C. Agrawal, and A. S. Bhalla, Applied Physics Letters, 81, 3212, (2002).

    Google Scholar 

  81. R. Kretschmer and K. Binder, Phys. Rev. B, 20, 1065, (1979).

    Google Scholar 

  82. O. G. Vendik and S. P. Zubko, J. Appl. Phys., 88, 5343, (2000).

    Google Scholar 

  83. I. P. Batra and B. D. Silverman, Solid State Communications, 11, 291, (1972).

    Google Scholar 

  84. R. D. Tilley and B. Zeks, Ferroelectrics, 134, 313, (1992).

    Google Scholar 

  85. J. M. Ziman, Principles of the theory of solids (Cambridge University Press, Cambridge, 1972), p. 435.

    Google Scholar 

  86. A. K. Tagantsev, E. Courtens, and L. Arzel, Phys. Rev. B, 64, 224107, (2001).

    Google Scholar 

  87. Y. Yamada, G. Shirane, and A. Linz, Phys. Rev., 177, 848, (1969).

    Google Scholar 

  88. A. K. Tagantsev and I. A. Stolichnov, Appl. Phys. Lett., 74, 1326, (1999).

    Google Scholar 

  89. A. K. Tagantsev, C. Pawlaczyk, K. Brooks, and N. Setter, Integrated Ferroelectrics, 4, 1, (1994).

    Google Scholar 

  90. A. M. Bratkovsky and A. P. Levanyuk, Phys. Rev. B, 61, 15042, (2000).

    Google Scholar 

  91. R. Waser and M. Klee, Integrated Ferroelectrics, 2, 23, (1992).

    Google Scholar 

  92. J. S. Speck and W. Pompe, J. Appl. Phys., 76, 466, (1994).

    Google Scholar 

  93. S. K. Streiffer, C. Basceri, C. B. Parker, S. E. Lash, and A. I. Kingon, J. Appl. Phys., 86, 4565, (1999).

    Google Scholar 

  94. N. A. Pertsev, A. G. Zembilgotov, S. Hoffman, R. Waser, and A. K. Tagantsev, J. Appl. Phys., 85, 1698 (1999).

    Google Scholar 

  95. Landolt-Bornstein, Numerical data and functional relationships in science and technology (Springer, New York, 1981), vol. New Series Vol. III/29a,b.

    Google Scholar 

  96. N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett., 80, 1988, (1998).

    Google Scholar 

  97. A. K. Tagantsev, N. A. Pertsev, P. Muralt, and N. Setter, Phys. Rev. B, 65, 012104, (2002).

    Google Scholar 

  98. N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phys. Rev. B, 61, R825, (2000).

    Google Scholar 

  99. R. E. Collin., Fondations for Microwave Engineering (McGraw-Hill, New York, 1992), p. 924.

    Google Scholar 

  100. D. C. Dube, J. Baborowski, P. Muralt, and N. Setter, Applied physics letters, 74, 3546, (1999).

    Google Scholar 

  101. A. Tombak, J. P. Maria, F. Ayguavives, Z. Jin, G. T. Stauf, A. I. Kingon, and A. Mortazawi, IEEE Microwave and Wireless Components Letters, 12, 3, (2002).

    Google Scholar 

  102. T. Ayguavives, A. Tombak, J. P. Maria, G. T. Stauf, C. Ragaglia, J. Roeder, A. Mortazawi, and A. Kingon, Proc. 12th ISAF, 1, 365, (2000).

    Google Scholar 

  103. S. Li, J. Sheen, Q. M. Zhang, S.-J. Jang, A. S. Bhalla, and L. E. Cross, Proc. 8th ISAF, 480, (1992).

    Google Scholar 

  104. S. S. Gevorgian, T. Martinsson, P. L. J. Linner, and E. L. Kollberg, IEEE Trans. on Microwave Theory And Techniques, 44, 896, (1996).

    Google Scholar 

  105. O. Vendik, S. Zubko, and M. Nikolski, Technical Physics, 44, 349, (1999).

    Google Scholar 

  106. A. N. Deleniv, Technical Physics, 44, 356, (1999).

    Google Scholar 

  107. M. Sucher and J. Fox, Handbook of Microwave Measurements (Interscience, New York, 1963), vol. 2.

    Google Scholar 

  108. C. Krowne, S. Kirchoefer, and J. Pond, IEEE MTT-S Digest, 1193, (2000).

    Google Scholar 

  109. E. Carlsson and S. Gevorgian, IEEE Transactions on Microwave Theory and Techniques, 47, 1544, (1999).

    Google Scholar 

  110. A. T. Findikoglu, Q. X. Jia, C. Kwon, B. J. Gibbons, K. O. Rasmussen, Y. Fan, D. W. Reagor, and A. R. Bishop, Materials Research Sosiety Symposium Proceedings, 603, 27, (2000).

    Google Scholar 

  111. A. T. Findikoglu, D. W. Reagor, K. O. Rasmussen, A. R. Bishop, N. Gronbech-Jensen, Q. X. Jia, Y. Fan, C. Kwon, and L. A. Ostrovsky, Journal of Applied Physics, 86, 1558, (1999).

    Google Scholar 

  112. B. W. Hakki and P. D. Coleman, IRE Trans. on Microwave Theory and Technique, 402, (1960).

    Google Scholar 

  113. J. Krupka, 5th International Conference on Dielectric Materials, Measurements and Applications, 322, (1988).

    Google Scholar 

  114. J. Delaballe, P. Guillon, and Y. Garault, AUE, Electronics and Communication, 35, 80, (1981).

    Google Scholar 

  115. O. G. Vendik, E. Kollberg, S. S. Gevorgian, A. B. Kozyrev, and O. I. Soldatenkov, Electronics Letters, 31, 654, (1995).

    Google Scholar 

  116. A. Eriksson, P. Linner, and S. Gevorgian, IEE Proc.-Microw. Antennas and Propag., 148, 51, (2001).

    Google Scholar 

  117. J. Watkins, Electronics Letters, 5, 524, (1969).

    Google Scholar 

  118. D. Kajfez, IEEE Trans. on Microwave Theory And Techniques, 42, 1149, (1994).

    Google Scholar 

  119. S. Gevorgian, E. Carlsson, P. Linner, E. Kollberg, O. Vendik, and E. Wikborg, IEEE Trans. on microwave Theory And Techniques, 44, 1738, (1996).

    Google Scholar 

  120. R. Thomas and D. C. Dube, Electronics Letters, 33, 218, (1997).

    Google Scholar 

  121. D. C. Dube, Ferroelectrics, 225, 141, (1999).

    Google Scholar 

  122. Y. G. Wang, M. E. Reeves, W. Chang, H. J.S., and W. Kim, Materials Research Sosiety Symposium Proceedings, 603, 289, (2000).

    Google Scholar 

  123. D. E. Steinhauer, C. P. Vlahacos, F. C. Wellstood, S. M. Anlage, C. Canedy, R. Ramesh, A. Stanishevsky, and J. Melngailis, Appl. Phys. Lett., 75, 3180, (1999).

    Google Scholar 

  124. D. Galt, J. Price, J. Beall, and T. Harvey, IEEE Trans. on Applied Superconductivity, 5, 2575, (1995).

    Google Scholar 

  125. A. B. Kozyrev, V. N. Keis, G. Koepf, R. Yandrofski, O. I. Soldatenkov, K. A. Dudin, and D. P. Dovgan, Microelectronic engineering, 29, 257, (1995).

    Google Scholar 

  126. T. Sakudo and H. Unoki, Phys. Rev. Lett., 26, 851, (1971).

    Google Scholar 

  127. M. A. Saifi and L. E. Cross, Phys. Rev. B, 2, 677, (1970).

    Google Scholar 

  128. J. Hemberger, P. Lunkenheimer, R. Viana, R. Bohmer, and A. Loidl, Phys. Rev. B, 52, 13159, (1995).

    Google Scholar 

  129. G. V. Belokopytov, Ferroelectrics, 168, 69, (1995).

    Google Scholar 

  130. J. Krupka, R. G. Geyer, M. Kuhn, and J. H. Hinken, IEEE Transactions on Microwave Theory and Techniques, 42, 1886 (1994).

    Google Scholar 

  131. F. Jona and G. Shirane, Feroelectric crystals (Macmillan, New York, 1962).

    Google Scholar 

  132. L. Arzel, PhD thesis, University of Montpellier II, Montpellier, 2001.

    Google Scholar 

  133. J. Harada, J. Axe, and G. Shirane, Phys. Rev. B, 4, 155, (1971).

    Google Scholar 

  134. E. Ngo, P. C. Joshi, M. W. Cole, and C.W. Hubbard, Appl. Phys. Lett., 79, 248, (2001).

    Google Scholar 

  135. L. Wu, S. Wu, F.-C. Chang, Y-T. Shen, and Y.-C. Chen, J. of Materials science, 35, 5945, (2000).

    Google Scholar 

  136. D. M. Potrepka, S.C. Tidrow, and A. Tauber, Integrated ferroelectrics, 42, 97, (2002).

    Google Scholar 

  137. L. C. Sengupta and S. Sengupta, Mat. Res. Innovat., 2, 278 (1999).

    Google Scholar 

  138. B. Su, J. H. Holmes, and T. W. Button, J. Am. Ceram. Soc., submitted, (2003).

    Google Scholar 

  139. C. Ang, A. S. Bhalla, R. Guo, and L. E. Cross, J. Appl. Phys., 90, 2465 (2001).

    Google Scholar 

  140. M. Daglish, M. Presland, and S. Batbedat, Integrated Ferroelectrics, 39, 339, (2001).

    Google Scholar 

  141. D. Li and M. A. Subramanian, Soild state Science, 2, 507, (2000).

    Google Scholar 

  142. S. Triebwasser, Phys. Rev., 114, 63, (1959).

    Google Scholar 

  143. B. Cristopher, C. B. DiAntonio, and S. M. Pilgrim, J. Am. Ceram. Soc., 84, 2547, (2001).

    Google Scholar 

  144. P. Debely, P. Gunter, and H. Arend, Am. Ceram. Soc. Bull., 58, 606, (1979).

    Google Scholar 

  145. J. Venkatesh et al., (unpublished).

    Google Scholar 

  146. A. Kozyrev, A. Ivanov, T. Samoilova, O. Soldatenkov, K. Astafiev, and L. C. Sengupta, Journal of Applied Physics, 88, 5334, (2000).

    Google Scholar 

  147. A. Outzourhit, J. U. Trefny, T. Kito, B. Yarar, A. Naziripour, and A. M. Hermann, Thin Solid Films, 259, 218, (1995).

    Google Scholar 

  148. H.-C. Li, W. Si, A. D. West, and X. X. Xi, Appl. Phys. Lett., 73, 464 (1998).

    Google Scholar 

  149. C. B. Parker, J. P. Maria, and A. I. Kingon, Applied Physics Letters, 81, 340, (2002).

    Google Scholar 

  150. C. Basceri, S. K. Streiffer, A. I. Kingon, and R. Waser, Journal of Applied Physics, 82, 2497, (1997).

    Google Scholar 

  151. J. Bellotti, E. K. Akdogan, A. Safari, W. Chang, and S. Kirchoefer, Integrated Ferroelectrics, 49, 113, (2002).

    Google Scholar 

  152. D. Schlom, unpublished, (2003).

    Google Scholar 

  153. W. Chang, J. S. Horwitz, A. C. Carter, J. M. Pond, S. W. Kirchoefer, C. M. Gilmore, and D. B. Chrisey, Appl. Phys. Lett., 74, 1033, (1999).

    Google Scholar 

  154. C. M. Carlson, T. V. Rivkin, P. A. Parilla, J. D. Perkins, D. S. Ginley, A. B. Kozyrev, V. N. Oshadchy, and A. S. Pavlov, Appl. Phys. Lett., 76, 1920, (2000).

    Google Scholar 

  155. K. F. Astafiev, V. O. Sherman, A. K. Tagantsev, N. Setter, P. K. Petrov, T. Kaydanova, D. S. Ginley, S. Hoffmann-Eifert, U. Bottger, and R. Waser, Integrated Ferroelectrics, (Submitted), (2003).

    Google Scholar 

  156. P. K. Petrov, Z. G. Ivanov, and S. S. Gevorgyan, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 288, 231, (2000).

    Google Scholar 

  157. Z. G. Ban and S. P. Alpay, Journal of Applied Physics, 91, 9288, (2002).

    Google Scholar 

  158. D. Fuchs, C. W. Schneider, R. Schneider, and H. Rietschel, J. Appl. Phys., 85, 7362, (1999).

    Google Scholar 

  159. O. G. Vendik and L. T. Ter-Martirosyan, J. Appl. Phys., 87, 1435, (2000).

    Google Scholar 

  160. J. H. Chen, C. L. Lia, K. Urban, and C. L. Chen, Applied Physics Letters, 81, 1291, (2002).

    Google Scholar 

  161. G. Rupprecht and R. O. Bell, Physical Review, 125, 1915, (1962).

    Google Scholar 

  162. M. J. Dalberth, R. E. Stauber, J. C. Price, C. T. Rogers, and D. Galt, Appl. Phys. Lett., 72, 507, (1998).

    Google Scholar 

  163. Y. Lemaitre, B. Marcilhac, D. Mansart, J. Siejka, and J. C. Mage, Physica C, 372, 667, (2002).

    Google Scholar 

  164. K. F. Astafiev et al., unpublished, (2003).

    Google Scholar 

  165. S. Razumov, A. Tumarkin, O. Buslov, M. Gaidukov, A. Gagarin, A. Ivanov, A. Kozyrev, Y. W. Song, and C. S. Park, Integrated Ferroelectrics, 39, 1317, (2001).

    Google Scholar 

  166. P. C. Joshi and M. W. Cole, Appl. Phys. Lett., 77, 289, (2000).

    Google Scholar 

  167. M. Bruel, Electronics Letters, 31, 1201, (1995).

    Google Scholar 

  168. F. J. Kub, K. D. Hobart, J. M. Pond, and S. W. Kirchoefer, Electronics Letters, 35, 477, (1999).

    Google Scholar 

  169. H. N. Al-Shareef, D. Dimos, M. V. Raymond, and R. W. Schwartz, Journal of Electroceramics, 1, 145, (1997).

    Google Scholar 

  170. J. H. Koh and A. Grishin, Applied Physics Letters, 79, 2234, (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Tagantsev, A., Sherman, V., Astafiev, K., Venkatesh, J., Setter, N. (2005). Permittivity, Tunability and Loss in Ferroelectrics for Reconfigurable High Frequency Electronics. In: Setter, N. (eds) Electroceramic-Based MEMS. Electronic Materials: Science and Technology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/0-387-23319-9_12

Download citation

Publish with us

Policies and ethics