Skip to main content

The Image of a Hurwitz Space Under the Moduli Map

  • Conference paper
Progress in Galois Theory

Part of the book series: Developments in Mathematics ((DEVM,volume 12))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Accola, On the number of automorphisms of a closed Riemann surface, Trans. Amer. Math. Soc. 131 (1968), 398–408.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of algebraic curves I, Springer, Grundlehren 267, 1985.

    Google Scholar 

  3. José Bertin, Compactification des schémas de Hurwitz, C.R. Acad. Sci. Paris I, vol. 322 (1996), 1063–1066.

    MATH  MathSciNet  Google Scholar 

  4. J. Birman, Braids, links and mapping class groups, Princeton University Press 1975.

    Google Scholar 

  5. Th. Breuer, Characters and automorphism groups of compact Riemann surfaces, London Math. Soc. Lect. Notes 280, Cambridge Univ. Press 2000.

    Google Scholar 

  6. M. Cornalba, On the locus of curves with automorphisms, Annali Mat. Pura Appl. 149 (1987), 135–149.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Farkas and I. Kra, Riemann Surfaces, Springer-Verlag, 1992.

    Google Scholar 

  8. M. Fried, Fields of definition of function fields and Hurwitz families — groups as Galois groups, Comm. Algebra 5 (1977), 17–82.

    MATH  MathSciNet  Google Scholar 

  9. M. Fried, Combinatorial computation of moduli dimension of Nielsen classes of covers, Contemporary Mathematics 89 (1989), 61–79.

    MATH  MathSciNet  Google Scholar 

  10. M. Fried and R. Guralnick, On uniformization of generic curves of genus g < 6 by radicals, unpublished manuscript.

    Google Scholar 

  11. M. Fried and M. Jarden, Diophantine properties of subfields of \( \bar {\mathbb{Q}}\), Amer. J. of Math. 100 (1978), 653–666.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Fried, E. Klassen and Y. Kopeliovich, Realizing alternating groups as monodromy groups of genus one curves, Proc. AMS 129 (2000), 111–119.

    Article  MathSciNet  Google Scholar 

  13. M. Fried and H. Voelklein, The inverse Galois problem and rational points on moduli spaces, Math. Annalen 290 (1991), 771–800.

    Article  MATH  Google Scholar 

  14. M. Fried and H. Voelklein, The embedding problem over a Hilbertian PAC-field, Annuls of Math. 135 (1992), 469–481.

    Article  MATH  Google Scholar 

  15. D. Frohardt and K. Magaard, Composition factors of monodromy groups, Annals of Math. 154 (2001), 1–19.

    MathSciNet  Google Scholar 

  16. The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.2; 2000. (http://www.gap-system.org)

    Google Scholar 

  17. L. Greenberg, Maximal Fuchsian groups, Bull. AMS 69 (1963), 569–573.

    MATH  Google Scholar 

  18. R. Guralnick and K. Magaard, On the minimal degree of a primitive permutation group, J. Algebra 207 (1998), 127–145.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Guralnick and M. Neubauer, Monodromy groups and branched coverings: The generic case, Contemp. Math. 186 (1995), 325–352.

    MATH  MathSciNet  Google Scholar 

  20. R. Guralnick and J. Shareshian, Alternating and Symmetric Groups as Monodromy Groups of Curves I, preprint.

    Google Scholar 

  21. J. Harris and I. Morrison, Moduli of curves, GTM 187, Springer 1998

    Google Scholar 

  22. W.J. Harvey and C. Maclachlan, On mapping class groups and Teichmüller spaces, Proc. London Math. Soc. 30 (1975), 495–512.

    MathSciNet  Google Scholar 

  23. A. Hatcher, P. Lochak and L. Schneps, On the Teichmüller tower of mapping class groups, J. reine angew. Math. 521 (2000), 1–24.

    MATH  MathSciNet  Google Scholar 

  24. A. Hatcher and W. Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), 221–237.

    Article  MATH  MathSciNet  Google Scholar 

  25. B. Huppert, Endliche Gruppen I, Springer Grundlehren 134, 1983.

    Google Scholar 

  26. C. Maclachlan, A bound for the number of automorphisms of a compact Riemann surface, J. London Math. Soc. (2) 44 (1969), 265–272.

    MATH  MathSciNet  Google Scholar 

  27. K. Magaard and H. Voelklein, The monodromy group of a function on a general curve, to appear in Israel J. Math.

    Google Scholar 

  28. K. Magaard, S. Sphectorov and H. Völklein, A GAP package for braid orbit computation, and applications, to appear in Experimental Math.

    Google Scholar 

  29. K. Magaard, S. Shpectorov, T. Shaska and H. Völklein, The locus of curves with prescribed automorphism group RIMS Publication series 1267 (2002), 112–141 (Communications in Arithmetic Fundamental Groups, Proceedings of the RIMS workshop held at Kyoto University Oct. 01)

    Google Scholar 

  30. G. Malle and B. H. Matzat, Inverse Galois Theory, Springer, Berlin-Heidelberg-New York 1999.

    MATH  Google Scholar 

  31. M. Matsumoto, A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities, Math. Ann. 316 (2000), 401–418.

    Article  MATH  MathSciNet  Google Scholar 

  32. B. Przywara, Braid operation software package 2.0 (1998), available at http://www.iwr.uni-heidelberg.de/ftp/pub/ho

    Google Scholar 

  33. J.F.X. Ries, Subvarieties of moduli space determined by finite groups acting on surfaces, Trans. AMS 335 (1993), 385–406.

    Article  MATH  MathSciNet  Google Scholar 

  34. J-P. Serre, Relèvements dans à n, C.R. Acad. Sci. Paris, serie I, 311 (1990), 477–482.

    MATH  MathSciNet  Google Scholar 

  35. J-P. Serre, Revêtements à ramification impaire et thêta-caractèristiques, C.R. Acad. Sci. Paris, serie I, 311 (1990), 547–552.

    MATH  MathSciNet  Google Scholar 

  36. T. Shaska and H. Voelklein, Elliptic subfields and automorphisms of genus two fields, Algebra, Arithmetic and Geometry with Applications. Papers from Shreeram S. Abhyankar’s 70th Birthday Conference (West Lafayette, 2000), pg. 687–707, Springer (2004).

    Google Scholar 

  37. D. Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. 6 (1972), 29–38.

    MATH  MathSciNet  Google Scholar 

  38. H. Voelklein, Groups as Galois Groups — an Introduction, Cambr. Studies in Adv. Math. 53, Cambridge Univ. Press 1996.

    Google Scholar 

  39. H. Völklein, Moduli spaces for covers of the Riemann sphere, Israel J. Math. 85 (1994), 407–430.

    MATH  MathSciNet  Google Scholar 

  40. S. Wewers, Construction of Hurwitz spaces, Dissertation, Universität Essen, 1998.

    Google Scholar 

  41. O. Zariski, Collected papers vol. III, p. 43–49, MIT Press 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Völklein, H. (2005). The Image of a Hurwitz Space Under the Moduli Map. In: Voelklein, H., Shaska, T. (eds) Progress in Galois Theory. Developments in Mathematics, vol 12. Springer, Boston, MA. https://doi.org/10.1007/0-387-23534-5_8

Download citation

Publish with us

Policies and ethics