Skip to main content

Progress in Lanthanides as Luminescent Probes

  • Chapter
Reviews in Fluorescence 2005

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2005))

16.1. Abstract

Using luminescent lanthanides, instead of conventional fluorophores, as donor molecules in resonance energy transfer measurements offers many technical advantages and opens up a wide-range of new applications. Advantages include farther measurable distances (∼ 100 Å) with greater accuracy, and insensitivity to incomplete labeling. We have also generated new luminescent lanthanide compounds with various advantages over more conventional probes. Applications highlighted include the study of ion channels in living cells and measuring in vitro conformation changes within smooth muscle myosin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

16.7. References

  1. Seveus, L., et al., Use of Fluorescent Europium Chelates as Labels in Microscopy Allows Glutaraldehyde Fixation and Permanent Mounting and Leads to Reduced Autofluorescence and Good Long-Term Stability. Microscopy Res. and Technique, 1994. 28: p. 149–154.

    Article  CAS  Google Scholar 

  2. Marriott, G., et al., Time-resolved delayed luminescence image microscopy using an europium ion chelate complex. Biophysical Journal, 1994. 67: p. 957–965.

    PubMed  CAS  Google Scholar 

  3. Stryer, L., D.D. Thomas, and C.F. Meares, Diffusion-Enhanced Fluorescence Energy Transfer, in Ann. Rev. of Biophys. Bioeng., L.J. Mullins, Editor. 1982, Annual Reviews, Inc.: Palo Alto, CA. p. 203–222.

    Google Scholar 

  4. Selvin, P.R., Lanthanide-based resonance energy transfer. IEEE J. of Selected Topics in Quantum Flectronics: Lasers in Biology, 1996. 2(4): p. 1077–1087.

    Article  CAS  Google Scholar 

  5. Mathis, G., Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clinical Chem., 1995. 41(9): p. 1391–1397.

    CAS  Google Scholar 

  6. Mathis, G., Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clinical Chem., 1993. 39(9): p. 1953–1959.

    CAS  Google Scholar 

  7. Mathis, G., et al., Homogeneous immunoassays using rare earth cryptates and time resolved fluorescence: principles and specific advantages for tumor markers. Anticancer Res, 1997. 17(4B): p. 3011–4.

    PubMed  CAS  Google Scholar 

  8. Kolb, A.J., J.W. Burke, and G. Mathis, A homogeneous, time-resolved fluorescence method for drug discovery, in High Throughput Screening: The Discovery of Bioactive Substances, J.P. Devlin, Editor. 1997, Marcel Dekker Inc. p. 345–360.

    Google Scholar 

  9. Stenroos, K., et al., Homogeneous time-resolved IL-2-IL-2R alpha assay using fluorescence resonance energy transfer. Cytokine, 1998. 10(7): p. 495–9.

    Article  PubMed  CAS  Google Scholar 

  10. Farrar, S.J., et al., Stoichiometry of a Ligand-gated Ion Channel Determined by Fluorescence Energy Transfer. J. Biol. Chem., 1999. 274(15): p. 10100–10104.

    Article  PubMed  CAS  Google Scholar 

  11. Blomberg, K., P. Hurskainen, and I. Hemmila, Terbium and Rhodamine as Labels in a Homogeneous Time-resolved Fluorometric Energy Transfer Assay of the B Subunit of Human Chorionic Gonadotropin in Serum. Clinical Chemistry, 1999. 45(6): p. 855–861.

    PubMed  CAS  Google Scholar 

  12. Jones, S.G., et al., Improvements in the Sensitivity of Time Resolved Fluorescence Energy Transfer Assays. J. Fluorescence, 2001. 11(1): p. 13–21.

    Article  CAS  Google Scholar 

  13. Heyduk, E., et al., Conformational changes of DNA induced by binding of chironomus high mobility group protein 1a (cHMG1a). J. Biol. Chem., 1997. 272(32): p. 19763–19770.

    Article  PubMed  CAS  Google Scholar 

  14. Heyduk, E. and T. Heyduk, Architecture of a complex between the sigma 70 subunit of Escherichia coli RNA polymerase and the nontemplate strand oligonucleotide. Luminescence resonance energy transfer study. J Biol Chem, 1999. 274(6): p. 3315–22.

    Article  PubMed  CAS  Google Scholar 

  15. Xiao, M., et al., Conformational changes between the active-site and regulatory light chain of myosin as determined by luminescence resonance energy transfer: The effect of nucleotides and actin. Proc. Nat’l. Acad. Sci., USA, 1998. 95: p. 15309–15314.

    Article  CAS  Google Scholar 

  16. Chen, J. and P.R. Selvin, Lifetime and color-tailored fluorophores in the micro-to millisecond time regime. J. Am. Chem. Soc., 2000. 122(4): p. 657–660.

    Article  CAS  Google Scholar 

  17. Cha, A., et al., Atomic scale movement of the voltage sensing region in a potassium channel measured via spectroscopy. Nature, 1999. 402: p. 809–813.

    Article  PubMed  CAS  Google Scholar 

  18. Lis, S., et al., Energy Transfer in Solution of Lanthanide Complexes. Journal of Photochemistry & Photobiology A: Chemistry, 2002. 150: p. 223–247.

    Article  Google Scholar 

  19. Saha, A.K., et al., Time-Resolved Fluorescence of a New Europium Chelate Complex: Demonstration of Highly Sensitive Detection of Protein and DNA Samples. J. Am. Chem. Soc., 1993. 115: p. 11032–11033.

    Article  CAS  Google Scholar 

  20. Xu, Y.Y., et al., Simultaneous quadruple-label fluorometric immunoassay of thyroid-stimulating hormone. 17 alpha-hydroxyprogesterone, immunoreactive trypsin, and creatine kinase MM isoenzyme in dried blood spots. Clin Chem, 1992. 38(10): p. 2038–43.

    PubMed  CAS  Google Scholar 

  21. Bunzli, J.-C.G., Luminescent Probes, in Lanthanide Probes in Life, Chemical and Earth Sciences, Theory and Practice, J.-C.G. Bunzli and G.R. Choppin, Editors. 1989, Elsevier: New York. p. 219–293.

    Google Scholar 

  22. Drexhage, K.H., Monomolecular Layers and Light. Sci. Amer., 1970. 222(3): p. 108–119.

    Article  CAS  Google Scholar 

  23. Reifenberger, J., et al., Emission Polarization Properties of Europium and Terbium Chelates. J. Phys. Chem B, 2003. 107: p. 12862–12873.

    Article  CAS  Google Scholar 

  24. Xiao, M. and P.R. Selvin, Quantum Yields of Luminescent Lanthanide Chelates and Far-Red Dyes Measured by Resonance Energy Transfer. J. Am. Chem. Soc, 2001. 123: p. 7067–7073.

    Article  PubMed  CAS  Google Scholar 

  25. Li, M. and P.R. Selvin, Amine-reactive forms of a luminescent DTPA chelate of terbium and europium: Attachment to DNA and energy transfer measurements. Bioconjugate Chem., 1997. 8(2): p. 127–132.

    Article  CAS  Google Scholar 

  26. Chen, J. and P.R. Selvin, Thiol-reactive luminescent lanthanide chelates. Bioconjugate Chem., 1999. 10(2): p. 311–315.

    Article  CAS  Google Scholar 

  27. Xiao, M., et al., An actin-dependent conformational change in myosin. Nat Struct Biol, 2003. 10(5): p. 402–8.

    Article  PubMed  CAS  Google Scholar 

  28. Akabas, M.H., et al., Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science, 1992. 258: p. 307–310.

    Article  PubMed  CAS  Google Scholar 

  29. Ge, P. and P.R. Selvin, Thiol-reactive Lanthanide Chelates, II. Bioconjugate Chemistry, 2003. 14: p. 870–876.

    Article  PubMed  CAS  Google Scholar 

  30. Ge, P. and P.R. Selvin, Carbostyril Derivatives as Antenna Molecules for Luminescent Lanthanide Chelates. Bioconjugate Chemistry, 2004.

    Google Scholar 

  31. Schelte, P., et al., Differential reactivity of maleimide and bromoacetyl functions with thiols: application to the preparation of liposomal diepitope constructs. Bioconjug Chem, 2000. 11(1): p. 118–23.

    Article  PubMed  CAS  Google Scholar 

  32. Li, M. and P.R. Selvin, Luminescent lanthanide polyaminocarboxylate chelates: the effect of chelate structure. J. Am. Chem. Soc., 1995. 117: p. 8132–8138.

    Article  CAS  Google Scholar 

  33. Chen, J. and P.R. Selvin, Synthesis of 7-Amino-4-trifluoromethyl-2-(IH)-quinolinone and its use as an antenna molecule for luminescent europium polyaminocarboxylate chelates. J. Photochem. Photobio. A:Chemistry, 2000. 5522: p. 1–6.

    Google Scholar 

  34. Crosby, G.A., R.E. Whan, and R.M. Alire, Intramolecular energy transfer in rare earth chelates: the role of the triplet state. J. Chem. Phys., 1961. 34: p. 743.

    Article  CAS  Google Scholar 

  35. Abusaleh, A. and C. Meares, Excitation and De-Excitation Processes in Lanthanide Chelates Bearing Aromatic Side chains. Photochemistry and Photobiology, 1984. 39(6): p. 763–769.

    PubMed  CAS  Google Scholar 

  36. Kirk, W.R., W.S. Wessels, and F.G. Prendergast, Lanthanide-Dependent Perturbations of Luminescence in Indolylethylenediaminetetraacetic Acid-Lanthanide Chelate. J. Phys. Chem., 1993. 97: p. 10326–10340.

    Article  CAS  Google Scholar 

  37. Alpha, B., et al., Antenna Effect in Luminescent Lanthanide Cryptates: A Photophysical Study. Photochemistry and Photobiology, 1990. 52(2): p. 299–306.

    CAS  Google Scholar 

  38. Horrocks, W.D., Jr. and D.R. Sudnick, Lanthanide Ion Probes of Structure in Biology. Laser-Induced Luminescence Decay Constants Provide a Direct Measure of the Number of Metal-Coordinated Water Molecules. J. Am. Chem. Soc., 1979. 101(2): p. 334–350.

    Article  CAS  Google Scholar 

  39. Horrocks, W.D., Jr., B. Holmquist, and B.L. Vallee, Energy transfer between Terbium(III) and Cobalt(II) in thermolysins: A new class of metal-metal distance probes. Proc. Nat. Acad. Sci. USA, 1975. 72(12): p. 4764–4768.

    Article  PubMed  CAS  Google Scholar 

  40. Horrocks, W.D., Jr. and D.R. Sudnick, Lanthanide Ion Luminescence Probes of the Structure of Biological Macromolecules. Accounts of Chemical Research, 1981. 14: p. 384–392.

    Article  CAS  Google Scholar 

  41. Selvin, P.R., Principles and Biophysical Applications of Luminescent Lanthanide Probes. Annual Review of Biophysics and Biomolecular Structure, 2002. 31: p. 275–302.

    Article  PubMed  CAS  Google Scholar 

  42. Selvin, P.R., The Renaissance in Fluorescence Resonance Energy Transfer. Nature Structural Biology, 2000. 7(9): p. 730–734.

    Article  PubMed  CAS  Google Scholar 

  43. Lakowicz, J.R., Principles of Fluorescence. 2 ed. 1999, New York: Kluwer Academic.

    Google Scholar 

  44. Selvin, P.R., Fluorescence Resonance Energy Transfer, in Methods in Enzymology, K. Sauer, Editor. 1995, Academic Press: Orlando. p. 300–334.

    Google Scholar 

  45. Förster, T., Experimental and Theoretical Investigation of the Intermolecular Transfer of Electronic Excitation Energy. Z. Naturforsch A, 1949. 4: p. 321–327.

    Google Scholar 

  46. Chakrabarty, T., et al., Holding two heads together: stability of the myosin II rod measured by resonance energy transfer between the heads. Proc Natl Acad Sci U S A, 2002. 99(9): p. 6011–6.

    Article  PubMed  CAS  Google Scholar 

  47. Dale, R.E., J. Eisinger, and W.E. Blumberg, The orientational freedom of molecular probes. Biophys. J., 1979. 26: p. 161–194.

    PubMed  CAS  Google Scholar 

  48. Stryer, L. and R.P. Haugland, Energy Transfer: A Spectroscopic Ruler. Proc. Natl. Acad. Sci., USA, 1967. 58: p. 719–726.

    Article  PubMed  CAS  Google Scholar 

  49. Cantor, C.R. and P.R. Schimmel, Biophysical Chemistry. Vol. 2. 1980, San Francisco: W. H. Freeman and Co.

    Google Scholar 

  50. Selvin, P.R. and J.E. Hearst, Luminescence energy transfer using a terbium chelate: Improvements on fluorescence energy transfer. Proc. Natl. Acad. Sci, USA, 1994. 91(21): p. 10024–10028.

    Article  PubMed  CAS  Google Scholar 

  51. Jovin, T.M. and D.J. Arndt-Jovin, FRET microscopy: digital imaging of fluorescence resonance energy transfer. Applications in cell biology, in Microspectrofluorimetry of Single Living Cells, E. Kohen, J.S. Ploem, and J.G. Hirschberg, Editors. 1989, Academic Press: Orlando. p. 99–117.

    Google Scholar 

  52. Heyduk, T. and E. Heyduk, Luminescence energy transfer with lanthanide chelates: interpretation of sensitized acceptor decay amplitudes. Anal Biochem, 2001. 289(1): p. 60–7.

    Article  PubMed  CAS  Google Scholar 

  53. Weber, G. and F.W.J. Teale, Determination of the Absolute Quantum Yield of Fluorescent Solutions. Trans. Faraday Soc., 1957. 53: p. 646–655.

    Article  CAS  Google Scholar 

  54. Vamosi, G., C. Gohlke, and R. Clegg, Fluorescence characteristics of 5-carboxytetramethylrhodamine linked covalently to the 5′ end of oligonucleotides: multiple conformers of single-stranded and double-stranded dye-DNA complexes. Biophys J, 1996. 71(2): p. 972–994.

    Article  PubMed  CAS  Google Scholar 

  55. Karstens, T. and K. Kobs, Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements. J. Phys. Chem., 1980. 84: p. 1871–1872.

    Article  CAS  Google Scholar 

  56. Clegg, R.M., et al.. Observing the Helical Geometry of Double-Stranded DNA in Solution by Fluorescence Resonance Energy Transfer. Proc. Natl. Acad. Sci. USA, 1993. 90(7): p. 2994–2998.

    Article  PubMed  CAS  Google Scholar 

  57. Schobel, U., et al., New Donor-Acceptor Pair for Fluorescent Immunoassays by Energy Transfer. Bioconjugate Chem., 1999. 10(6): p. 1107–1114.

    Article  CAS  Google Scholar 

  58. Selvin, P.R., et al., Crystal structure and spectroscopic characterization of a luminescent europium chelate. Inorganic Chemistry, 1996. 35: p. 700–705.

    Article  CAS  Google Scholar 

  59. Xiao, M. and P.R. Selvin, An Improved instrument for measuring time-resolved lanthanide emission and resonance energy transfer. Rev. Sci. Inst., 1999. 70(10): p. 3877–3881.

    Article  CAS  Google Scholar 

  60. Doyle, D.A., et al., The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity. Science, 1998. 280: p. 69–77.

    Article  PubMed  CAS  Google Scholar 

  61. Blaustein, R.O., et al., Tethered blockers as molecular ‘tape measures’ for a voltage-gated K+ channel. Nat Struct Biol, 2000. 7(4): p. 309–11.

    Article  PubMed  CAS  Google Scholar 

  62. Glauner, K.S., et al., Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature, 1999. 402(6763): p. 813–817.

    Article  PubMed  CAS  Google Scholar 

  63. Horenstein, J., et al., Protein mobility and GABA-induced conformational changes in GABA(A) receptor pore-lining M2 segment. Nat Neurosci, 2001. 4(5): p. 477–85.

    PubMed  CAS  Google Scholar 

  64. Johnson, J.P., Jr. and W.N. Zagotta, Rotational movement during cyclic nucleotide-gated channel opening Nature, 2001. 412(6850): p. 917–21.

    Article  PubMed  CAS  Google Scholar 

  65. Loo, T.W. and D.M. Clarke, Cross-linking of human multidrug resistance p-glycoprotein by the substrate tris-(2-maleimidoethyl)amine, is altered by atp hydrolysis. Evidence for rotation of a transmembrane helix. J Biol Chem, 2001. 276(34): p. 31800–5.

    Article  PubMed  CAS  Google Scholar 

  66. Lee, S.Y. and R. MacKinnon, A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature, 2004. 430(6996): p. 232–5.

    Article  PubMed  CAS  Google Scholar 

  67. Jiang, Y., et al., The principle of gating charge movement in a voltage-dependent K+ channel. Nature, 2003. 423(6935): p. 42–8.

    Article  PubMed  CAS  Google Scholar 

  68. Jiang, Y., et al., X-ray structure of a voltage-dependent K+ channel. Nature, 2003. 423(6935): p. 33–41.

    Article  PubMed  CAS  Google Scholar 

  69. Rayment, I., et al., Structure of the actin-myosin complex and its implications for muscle contraction. Science, 1993. 261: p. 58–65.

    Article  PubMed  CAS  Google Scholar 

  70. Dominguez, R., et al., Crystal Structure of a Vertebrate Smooth Muscle Myosin Motor Domain and Its Complex with the Essential Light Chain: Visualization of the Pre-Power Stroke State. Cell, 1998. 94: p. 559–571.

    Article  PubMed  CAS  Google Scholar 

  71. Houdusse, A., et al., Atomic Structure of Scallop Myosin Subfragment SI Complexed with MgADP: A Novel Conformation of the Myosin Head. Cell, 1999. 97: p. 459–470.

    Article  PubMed  CAS  Google Scholar 

  72. Whittaker, M, et al., A 35-Angstrom Movement of Smooth Muscle Myosin on ADP Release. Nature, 1995. 378(6558): p. 748–751.

    Article  PubMed  CAS  Google Scholar 

  73. Gollub, J., C.R. Cremo, and R. Cooke, ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin. Nature Structural Biology, 1996. 3(9): p. 796–802.

    Article  PubMed  CAS  Google Scholar 

  74. Tsien, R.Y., The green fluorescent protein. Annu. Rev. Biochem., 1998. 67: p. 509–44.

    Article  PubMed  CAS  Google Scholar 

  75. Griffin, B.A., S.R. Adams, and R.Y. Tsien, Specific Covalent Labeling of Recombinant Protein Molecules Inside Live Cells. Science, 1998. 281: p. 269–272.

    Article  PubMed  CAS  Google Scholar 

  76. Kapanidis, A.N., Y.W. Ebright, and R.H. Ebright, Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic Acid (n)-fluorochrome conjugates. J Am Chem Soc, 2001. 123(48): p. 12123–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Reifernberger, J.G., Ge, P., Selvin, P.R. (2005). Progress in Lanthanides as Luminescent Probes. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2005. Reviews in Fluorescence, vol 2005. Springer, Boston, MA. https://doi.org/10.1007/0-387-23690-2_16

Download citation

Publish with us

Policies and ethics