Skip to main content

Serotonin and Neuroendocrine Regulation

Relevance to the Sleep/Wake Cycle

  • Chapter
Neuroendocrine Correlates of Sleep/Wakefulness

Abstract

Serotonin was first isolated from serum by Rapport et al. 1,2 and was subsequently found to be present in the brain and to function as a neurotransmitter. 3–5 Over the course of the last 50 years there has been an explosion of knowledge of the serotonergic system. The relatively recent development of selective serotonin reuptake inhibitors (SSRIs) and their effectiveness in treating a vast array of conditions (e.g. depression, anxiety, obesity, bulimia, aggression, obsessive compulsive disorder and post-traumatic stress disorder) has only served to heighten interest into the multitude of functions that serotonin influences via its actions within the central nervous system. 614 Two of these functions of serotonin—the activation of various neuroendocrine systems and modulation of the sleep/wake cycle—wiU be dealt with in this review. Particular emphasis will be placed on the possible role that neuroendocrine systems may play in mediating some of the effects of serotonin on the three major components of the sleep/wake cycle: wakefulness, slow wave sleep (SWS) and rapid eye-movement (REM) sleep

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rapport MM. Serum vasoconstrictor (serotonin). V. The presence of creatine in the complex: a proposed study of the vasocontrictor principle. J Biol Chem 1949;180:961–969.

    PubMed  CAS  Google Scholar 

  2. Rapport MM, Green AA, Page IH. Serum vasoconstrictor (serotonin). IV. Isolation and characterization. J Biol Chem 1948;176:1243–1251.

    PubMed  CAS  Google Scholar 

  3. Amin AH, Crawford TBB. The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J physiol (Lond) 1954;126:596–618.

    PubMed  CAS  Google Scholar 

  4. Twarog BM, Page IH. Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Physiol 1953;175:157–161.

    PubMed  CAS  Google Scholar 

  5. Welsh JH. Serotonin as a possible neurohumoral agent; evidence obtained in lower animals. Ann N Y Acad Sci 1957;66(3):618–30.

    PubMed  CAS  Google Scholar 

  6. Coccaro EF, Kavoussi RJ, Hauger RL. Serotonin function and antiaggressive response to fluoxetine: a pilot study. Biol Psychiatry 1997;42(7):546–52.

    PubMed  CAS  Google Scholar 

  7. Coplan JD, Papp LA, Pine D, et al. Clinical improvement with fluoxetine therapy and noradrenergic function in patients with panic disorder. Arch Gen Psychiatry 1997;54(7):643–8.

    PubMed  CAS  Google Scholar 

  8. Pearlstein T, Rosen K, Stone AB. Mood disorders and menopause. Endocrinol Metab Clin North Am 1997;26(2):279–94.

    PubMed  CAS  Google Scholar 

  9. Perez V, Gilaberte I, Faries D, et al. Randomised, double-blind, placebo-controlled trial of pindolol in combination with fluoxetine antidepressant treatment. Lancet 1997;349(9065):1594–7.

    PubMed  CAS  Google Scholar 

  10. Yonkers KA. Antidepressants in the treatment of premenstrual dysphoric disorder. J Clin Psychiatry 1997;58Suppl 14:4–10; discussion 11–3.

    PubMed  CAS  Google Scholar 

  11. Dodman NH, Donnelly R, Shuster L, et al. Use of fluoxetine to treat dominance aggression in dogs. J Am Vet Med Assoc 1996;209(9):1585–7.

    PubMed  CAS  Google Scholar 

  12. Greeno CG, Wing RR. A double-blind, placebo-controlled trial of the effect of fluoxetine on dietary intake in overweight women with and without binge-eating disorder. Am J Clin Nutr 1996;64(3):267–73.

    PubMed  CAS  Google Scholar 

  13. Goldstein DJ, Wilson MG, Thompson VL, et al. Long-term fluoxetine treatment of bulimia nervosa. Fluoxetine Bulimia Nervosa Research Group. Br J Psychiatry 1995;166(5):660–6.

    PubMed  CAS  Google Scholar 

  14. Barr LC, Goodman WK, McDougle CJ, et al. Tryptophan depletion in patients with obsessive-compulsive disorder who respond to serotonin reuptake inhibitors. Arch Gen Psychiatry 1994;51(4):309–17.

    PubMed  CAS  Google Scholar 

  15. Dahlstrom A, Fuxe K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 1964;62(Suppl 232):1–55.

    Google Scholar 

  16. Steinbusch HW, Verhofstad AA, Joosten HW. Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience 1978;3(9):811–9.

    PubMed  CAS  Google Scholar 

  17. Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev 1992;72(1):165–229.

    PubMed  CAS  Google Scholar 

  18. Baumgarten HG, Grozdanovic Z. Anatomy of central serotoninergic projection systems. In: Baumgarten HG, Gothert M, editors. Serotoninergic neurons and 5-HT receptors in the CNS. Berlin: Springer-Verlag; 1997. p. 41–90.

    Google Scholar 

  19. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology 1999;38(8):1083–152.

    PubMed  CAS  Google Scholar 

  20. Raymond JR, Mukhin YV, Gelasco A, et al. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 2001;92(2–3):179–212.

    PubMed  CAS  Google Scholar 

  21. Hanley NR, Van de Kar LD. Serotonin and the neuroendocrine regulation of the hypothalamic-pituitary-adrenal axis in health and disease. Vitam Horm 2003; 66:189–255.

    PubMed  CAS  Google Scholar 

  22. Garnovskaya MN, van Biesen T, Hawe B, et al. Ras-dependent activation of fibroblast mitogen-activated protein kinase by 5-HT1A receptor via a G protein beta gamma-subunit-initiated pathway. Biochemistry 1996;35(43):13716–22.

    PubMed  CAS  Google Scholar 

  23. Millan MJ, Newman-Tancredi A, Duqueyroix D, et al. Agonist properties of pindolol at h5-HT1A receptors coupled to mitogen-activated protein kinase. Eur J Pharmacol 2001;424(1):13–7.

    PubMed  CAS  Google Scholar 

  24. Mukhin YV, Garnovskaya MN, Collinsworth G, et al. 5-Hydroxytryptamine1A receptor/Gibetagamma stimulates mitogen-activated protein kinase via NAD(P)H oxidase and reactive oxygen species upstream of src in chinese hamster ovary fibroblasts. Biochem J 2000;347 Pt 1:61–7.

    PubMed  CAS  Google Scholar 

  25. Schramek H. MAP kinases: from intracellular signals to physiology and disease. News Physiol Sci 2002;17:62–67.

    PubMed  CAS  Google Scholar 

  26. Gorman JM. Treating generalized anxiety disorder. J Clin Psychiatry 2003; 64(Suppl 2):24–9.

    PubMed  Google Scholar 

  27. Gross C, Zhuang X, Stark K, et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 2002; 416(6879):396–400.

    PubMed  CAS  Google Scholar 

  28. Artigas F, Romero L, de Montigny C, et al. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 1996;19(9):378–83.

    PubMed  CAS  Google Scholar 

  29. Sotelo C, Cholley B, El Mestikawy S, et al. Direct Immunohistochemical Evidence of the Existence of 5-HT1A Autoreceptors on Serotoninergic Neurons in the Midbrain Raphe Nuclei. Eur J Neurosci 1990;2(12):1144–1154.

    PubMed  Google Scholar 

  30. Kia HK, Miquel MC, Brisorgueil MJ, et al. Immunocytochemical localization of serotonin1A receptors in the rat central nervous system. J Comp Neurol 1996;365(2):289–305.

    PubMed  CAS  Google Scholar 

  31. Verge D, Calas A. Serotoninergic neurons and serotonin receptors: gains from cytochemical approaches. J Chem Neuroanat 2000;18(1–2):41–56.

    PubMed  CAS  Google Scholar 

  32. Stamford JA, Davidson C, McLaughlin DP, et al. Control of dorsal raphe 5-HT function by multiple 5-HT(1) autoreceptors: parallel purposes or pointless plurality? Trends Neurosci 2000;23(10):459–65.

    PubMed  CAS  Google Scholar 

  33. Zhang Y, Dudas B, Muma NA, et al. Co-localization of 5-HT1A and 5-HT2A serotonin receptors on oxytocin cells in the hypothalamic paraventricular nucleus. Neuroscience Abst. 2001;17(136):265.12.

    Google Scholar 

  34. Portas CM, Bjorvatn B, Ursin R. Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol 2000;60(1):13–35.

    PubMed  CAS  Google Scholar 

  35. Ursin R. Serotonin and sleep. Sleep Med Rev 2002;6(1):55–69.

    PubMed  Google Scholar 

  36. Cespuglio R, Faradji H, Gomez ME, et al. Single unit recordings in the nuclei raphe dorsalis and magnus during the sleep-waking cycle of semi-chronic prepared cats. Neurosci Lett 1981;24(2):133–8.

    PubMed  CAS  Google Scholar 

  37. McGinty DJ, Harper RM. Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 1976;101(3):569–75.

    PubMed  CAS  Google Scholar 

  38. Trulson ME, Jacobs BL. Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 1979;163(1):135–50.

    PubMed  CAS  Google Scholar 

  39. Cespuglio R, Walker E, Gomez ME, et al. Cooling of the raphe nucleus induces sleep in the cat. Neurosci Lett 1976;3:221–227.

    PubMed  CAS  Google Scholar 

  40. Monti JM, Jantos H. Dose-dependent effects of the 5-HT1A receptor agonist 8-OH-DPAT on sleep and wakefulness in the rat. J Sleep Res 1992;1(3): 169–175.

    PubMed  Google Scholar 

  41. Bjorvatn B, Fagerland S, Eid T, et al. Sleep/waking effects of a selective 5-HT1A receptor agonist given systemically as well as perfused in the dorsal raphe nucleus in rats. Brain Res 1997;770(1–2):81–8.

    PubMed  CAS  Google Scholar 

  42. Monti JM, Jantos H, Silveira R, et al. Sleep and waking in 5,7-DHT-lesioned or (-)-pindolol-pretreated rats after administration of buspirone, ipsapirone, or gepirone. Pharmacol Biochem Behav 1995;52(2):305–12.

    PubMed  CAS  Google Scholar 

  43. Gillin JC, Sohn JW, Stahl SM, et al. Ipsapirone, a 5-HT1A agonist, suppresses REM sleep equally in unmedicated depressed patients and normal controls. Neuropsychopharmacology 1996;15(2):109–15.

    PubMed  CAS  Google Scholar 

  44. Driver HS, Flanigan MJ, Bentley AJ, et al. The influence of ipsapirone, a 5-HT1A agonist, on sleep patterns of healthy subjects. Psychopharmacology (Berl) 1995;117(2):186–92.

    PubMed  CAS  Google Scholar 

  45. Seifritz E, Moore P, Trachsel L, et al. The 5-HT1A agonist ipsapirone enhances EEG slow wave activity in human sleep and produces a power spectrum similar to 5-HT2 blockade. Neurosci Lett 1996;209(1):41–4.

    PubMed  CAS  Google Scholar 

  46. Sorensen E, Gronli J, Bjorvatn B, et al. The selective 5-HT(1A) receptor antagonist p-MPPI antagonizes sleep-waking and behavioural effects of 8-OH-DPAT in rats. Behav Brain Res 2001;121(1–2):181–7.

    PubMed  CAS  Google Scholar 

  47. Portas CM, Thakkar M, Rainnie D, et al. Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. J Neurosci 1996;16(8):2820–8.

    PubMed  CAS  Google Scholar 

  48. Monti JM, Jantos H, Monti D. Increased REM sleep after intra-dorsal raphe nucleus injection of flesinoxan or 8-OHDPAT: prevention with WAY 100635. Eur Neuropsychopharmacol 2002;12(1):47–55.

    PubMed  CAS  Google Scholar 

  49. Boutrel B, Monaca C, Hen R, et al. Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J Neurosci 2002;22(11):4686–92.

    PubMed  CAS  Google Scholar 

  50. Dugovic C. Functional activity of 5-HT2 receptors in the modulation of the sleep/wakefulness states. J Sleep Res 1992;1(3):163–168.

    PubMed  Google Scholar 

  51. Dugovic C, Wauquier A, Leysen JE, et al. Functional role of 5-HT2 receptors in the regulation of sleep and wakefulness in the rat. Psychopharmacology (Berl) 1989;97(4):436–42.

    PubMed  CAS  Google Scholar 

  52. Dugovic C, Wauquier A. 5-HT2 receptors could be primarily involved in the regulation of slow-wave sleep in the rat. Eur J Pharmacol 1987;137(1):145–6.

    PubMed  CAS  Google Scholar 

  53. Landolt HP, Meier V, Burgess HJ, et al. Serotonin-2 receptors and human sleep: effect of a selective antagonist on EEG power spectra. Neuropsychopharmacology 1999;21(3):455–66.

    PubMed  CAS  Google Scholar 

  54. Sharpley AL, Elliott JM, Attenburrow MJ, et al. Slow wave sleep in humans: role of 5-HT2A and 5-HT2C receptors. Neuropharmacology 1994;33(3–4):467–71.

    PubMed  CAS  Google Scholar 

  55. Sakai K, Crochet S. A neural mechanism of sleep and wakefulness. Sleep Biol Rhyth 2003;1:29–42.

    Google Scholar 

  56. Monti JM, Monti D. Role of dorsal raphe nucleus serotonin 5-HT1A receptor in the regulation of REM sleep. Life Sci 2000;66(21):1999–2012.

    PubMed  CAS  Google Scholar 

  57. Plotsky PM, Thrivikraman KV, Meaney MJ. Central and feedback regulation of hypothalamic corticotropin-releasing factor secretion. Ciba Foundation symposium 1993;172:59–84.

    PubMed  CAS  Google Scholar 

  58. Swanson LW, Sawchenko PE, Rivier J, et al. Organization of ovine corticotropin-releasing factor immunoreactive cells and fibres in the rat brain: an immunohistochemical study. Neuroendocrinology 1983;36:165–186.

    PubMed  CAS  Google Scholar 

  59. Sawchenko PE, Brown ER, Chan RK, et al. The paraventricular nucleus of the hypothalamus and the funtional neuroanatomy of visceromotor responses to stress. Prog Brain Res 1996;107:201–22.

    PubMed  CAS  Google Scholar 

  60. Vale W, Spiess J, Rivier C, et al. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981;213(4514):1394–7.

    PubMed  CAS  Google Scholar 

  61. Whitnall MH. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 1993;40:573–629.

    PubMed  CAS  Google Scholar 

  62. Gillies GE, Linton EA, Lowry PJ. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 1982;299(5881):355–7.

    PubMed  CAS  Google Scholar 

  63. Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature 1983;305(5932):325–7.

    PubMed  CAS  Google Scholar 

  64. Rivier C, Vale W. Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin secretion in vivo. Endocrinology 1983;113(3):939–42.

    PubMed  CAS  Google Scholar 

  65. Gibbs DM. High concentrations of oxytocin in hypophysial portal plasma. Endocrinology 1984;114(4):1216–8.

    PubMed  CAS  Google Scholar 

  66. Buma P, Nieuwenhuys R. Ultrastructural demonstration of oxytocin and vasopressin release sites in the neural lobe and median eminence of the rat by tannic acid and immunogold methods. Neurosci Lett 1987;74(2):151–7.

    PubMed  CAS  Google Scholar 

  67. Gibbs DM, Vale W, Rivier J, et al. Oxytocin potentiates the ACTH-releasing activity of CRF(41) but not vasopressin. Life Sci 1984;34(23):2245–9.

    PubMed  CAS  Google Scholar 

  68. Gibbs DM. Stress-specific modulation of ACTH secretion by oxytocin. Neuroendocrinology 1986;42(6):456–8.

    PubMed  CAS  Google Scholar 

  69. Miyata S, Itoh T, Lin SH, et al. Temporal changes of c-fos expression in oxytocinergic magnocellular neuroendocrine cells of the rat hypothalamus with restraint stress. Brain Res Bull 1995;37(4):391–5.

    PubMed  CAS  Google Scholar 

  70. Beaulieu S, Di Paolo T, Barden N. Control of ACTH secretion by the central nucleus of the amygdala: implication of the serotoninergic system and its relevance to the glucocorticoid delayed negative feedback mechanism. Neuroendocrinology 1986;44(2):247–54.

    PubMed  CAS  Google Scholar 

  71. Roozendaal B, Koolhaas JM, Bohus B. Attenuated cardiovascular, neuroendocrine, and behavioral responses after a single footshock in central amygdaloid lesioned male rats. Physiol Behav 1991;50(4):771–5.

    PubMed  CAS  Google Scholar 

  72. Van de Kar LD, Piechowski RA, Rittenhouse PA, et al. Amygdaloid lesions: differential effect on conditioned stress and immobilization-induced increases in corticosterone and renin secretion. Neuroendocrinology 1991;54(2):89–95.

    PubMed  Google Scholar 

  73. Xu Y, Day TA, Buller KM. The Central amygdala modulates hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1b administration. Neuroscience 1999;94(1):175–183.

    PubMed  CAS  Google Scholar 

  74. Dayas CV, Buller KM, Day TA. Neuroendocrine responses to an emotional stressor: evidence for involvement of the medial but not the central amygdala. Euro. J. Neurosci. 1999;11:2312–2322.

    CAS  Google Scholar 

  75. Dunn JD. Plasma corticosterone responses to electrical stimulation of the bed nucleus of the stria terminalis. Brain Research 1987;407:327–331.

    PubMed  CAS  Google Scholar 

  76. Crane JW, Buller KM, Day TA. Evidence that the bed nucleus of the stria terminalis contributes to the modulation of hypophysiotropic corticotropin-releasing factor cell responses to systemic interleukin-1beta. J Comp Neurol 2003;467(2):232–42.

    PubMed  CAS  Google Scholar 

  77. Crane JW, Ebner K, Day TA. Medial prefrontal cortex suppression of the hypothalamic-pituitary-adrenal axis response to a physical stressor, systemic delivery of interleukin-1beta. Eur J Neurosci 2003;17(7):1473–81.

    PubMed  CAS  Google Scholar 

  78. Gray TS, Piechowski RA, Yracheta JM, et al. Ibotenic acid lesions in the bed nucleus of the stria terminalis attenuate conditioned stress-induced increases in prolactin, ACTH and corticosterone. Neuroendocrinology 1993;57:517–524.

    PubMed  CAS  Google Scholar 

  79. Feldman S, Conforti N. Subcortical pathways involved in the mediation of adrenocortical responses following frontal cortex stimulation. Neurosci Lett 1987;73(1):85–9.

    PubMed  CAS  Google Scholar 

  80. Dunn JD. Plasma corticosterone responses to electrical stimulation of the medial frontal cortex. Neurosci Res Communic 1990;7(1):1–7.

    CAS  Google Scholar 

  81. Diorio D, Viau V, Meaney MJ. The role of the medial prefrontal cortex (cingulated gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 1993;13(9):3839–47.

    PubMed  CAS  Google Scholar 

  82. Herman JP, Cullinan WE, Watson SJ. Involvement of the Bed Nucleus of the Stria Terminalis in Tonic Regulation of Paraventricular Hypothalamic CRH and AVP mRNA Expression. J. Neuroendocrinology 1994;6:433–442.

    CAS  Google Scholar 

  83. Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 1997;20(2):78–84.

    PubMed  CAS  Google Scholar 

  84. Feldman S, Weidenfeld J. Neural mechanisms involved in the corticosteroid feedback effects on the hypothalamo-pituitary-adrenocortical axis. Prog. Neurobiol. 1995;45:129–141.

    PubMed  CAS  Google Scholar 

  85. Buller K, Xu Y, Dayas C, et al. Dorsal and ventral medullary catecholamine cell groups contribute differentially to systemic interleukin-1beta-induced hypothalamic-pituitary-adrenal axis responses. Neuroendocrinology 2001;73(2):129–38.

    PubMed  CAS  Google Scholar 

  86. Dayas CV, Buller KM, Crane JW, et al. Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdale and in medullary noradrenergic cell groups. Eur J Neurosci 2001;14(7):1143–52.

    PubMed  CAS  Google Scholar 

  87. Keller-Wood M. Fast feedback control of canine corticotrophin by cortisol. Endocrinology 1990;126:1959–1966.

    PubMed  CAS  Google Scholar 

  88. Dallman MF, Akana SF, Cascio CS, et al. regulation of ACTH secretion: variations on a theme of B. Rec. Prog. Horm. Res. 1987;41:113–173.

    Google Scholar 

  89. Petrov T, Krukoff TL, Jhamandas JH. The hypothalamic paraventricular and lateral parabrachial nuclei receive collaterals from raphe nucleus neurons: a combined double retrograde and immunocytochemical study. J Comp Neurol 1992;318(1):18–26.

    PubMed  CAS  Google Scholar 

  90. Petrov T, Krukoff TL, Jhamandas JH. Chemically defined collateral projections from the pons to the central nucleus of the amygdala and hypothalamic paraventricular nucleus in the rat. Cell Tissue Res 1994;277(2):289–95.

    PubMed  CAS  Google Scholar 

  91. Liposits Z, Phelix C, Paull WK. Synaptic interaction of serotonergic axons and corticotropin releasing factor (CRF) synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. A light and electron microscopic immunocytochemical study. Histochemistry 1987;86(6):541–9.

    PubMed  CAS  Google Scholar 

  92. Bianchi M, Sacerdote P, Panerai AE. Fluoxetine reduces inflammatory edema in the rat: involvement of the pituitary-adrenal axis. Eur J Pharmacol 1994; 263(1–2):81–4.

    PubMed  CAS  Google Scholar 

  93. von Bardeleben U, Steiger A, Gerken A, et al. Effects of fluoxetine upon pharmacoendocrine and sleep-EEG parameters in normal controls. Int Clin Psychopharmacol 1989;4Suppl 1:1–5.

    Google Scholar 

  94. Reist C, Helmeste D, Albers L, et al. Serotonin indices and impulsivity in normal volunteers. Psychiatry Res 1996;60(2–3):177–84.

    PubMed  CAS  Google Scholar 

  95. Mas M, Farre M, de la Torre R, et al. Cardiovascular and neuroendocrine effects and pharmacokinetics of 3, 4-methylenedioxymethamphetamine in humans. J Pharmacol Exp Ther 1999;290(1):136–45.

    PubMed  CAS  Google Scholar 

  96. Grob CS, Poland RE, Chang L, et al. Psychobiologic effects of 3,4-methylene-dioxymethamphetamine in humans: methodological considerations and preliminary observations. Behav Brain Res 1996;73(1–2):103–7.

    PubMed  CAS  Google Scholar 

  97. Gundlah C, Pecins-Thompson M, Schutzer WE, et al. Ovarian steroid effects on serotonin 1A, 2A and 2C receptor mRNA in macaque hypothalamus. Brain Res Mol Brain Res 1999;63(2):325–39.

    PubMed  CAS  Google Scholar 

  98. Li Q, Wichems C, Heils A, et al. Reduction in the density and expression, but not G-protein coupling, of serotonin receptors (5-HT1A) in 5-HT transporter knockout mice: gender and brain region differences. J Neurosci 2000;20(21):7888–95.

    PubMed  CAS  Google Scholar 

  99. Li Q, Battaglia G, Van de Kar LD. Autoradiographic evidence for differential G-protein coupling of 5-HT1A receptors in rat brain: lack of effect of repeated injections of fluoxetine. Brain Res 1997;769(1):141–51.

    PubMed  CAS  Google Scholar 

  100. Li Q, Muma NA, Battaglia G, et al. A desensitization of hypothalamic 5-HT1A receptors by repeated injections of paroxetine: reduction in the levels of G(i) and G(o) proteins and neuroendocrine responses, but not in the density of 5-HT1A receptors. J Pharmacol Exp Ther 1997;282(3):1581–90.

    PubMed  CAS  Google Scholar 

  101. Vicentic A, Li Q, Battaglia G, et al. WAY-100635 inhibits 8-OH-DPAT-stimulated oxytocin, ACTH and corticosterone, but not prolactin secretion. Eur J Pharmacol 1998;346(2–3):261–6.

    PubMed  CAS  Google Scholar 

  102. Li Q, Levy AD, Cabrera TM, et al. Long-term fluoxetine, but not desipramine, inhibits the ACTH and oxytocin responses to the 5-HT1A agonist, 8-OH-DPAT, in male rats. Brain Res 1993;630(1–2):148–56.

    PubMed  CAS  Google Scholar 

  103. Lesch KP, Sohnle K, Poten B, et al. Corticotropin and cortisol secretion after central 5-hydroxytryptamine-1A (5-HT1A) receptor activation: effects of 5-HT receptor and beta-adrenoceptor antagonists. J Clin Endocrinol Metab 1990;70(3):670–4.

    PubMed  CAS  Google Scholar 

  104. Lesch KP, Mayer S, Disselkamp-Tietze J, et al. 5-HT1A receptor responsivity in unipolar depression. Evaluation of ipsapirone-induced ACTH and cortisol secretion in patients and controls. Biol Psychiatry 1990;28(7):620–8.

    PubMed  CAS  Google Scholar 

  105. Sargent P, Williamson DJ, Pearson G, et al. Effect of paroxetine and nefazodone on 5-HT1A receptor sensitivity. Psychopharmacology (Berl) 1997;132(3):296–302.

    PubMed  CAS  Google Scholar 

  106. Urban JH, Van de Kar LD, Lorens SA, et al. Effect of the anxiolytic drug buspirone on prolactin and corticosterone secretion in stressed and unstressed rats. Pharmacol Biochem Behav 1986;25(2):457–62.

    PubMed  CAS  Google Scholar 

  107. Bagdy G. Role of the hypothalamic paraventricular nucleus in 5-HT1A, 5-HT2A and 5-HT2C receptor-mediated oxytocin, prolactin and ACTH/corticosterone responses. Behav Brain Res 1996;73:277–280.

    PubMed  CAS  Google Scholar 

  108. Bagdy G. Studies on the sites and mechanisms of 5-HT1A receptor-mediated in vivo actions. Acta Physiol Hung 1996;84(4):399–401.

    PubMed  CAS  Google Scholar 

  109. Osei-Owusu P, Sullivan NR, Van de Kar LD, et al. 5-HT1A receptors in the paraventricular nucleus of the hypothalamus mediate endocrine and behavioral but not cardiovascular responses to 8-OH-DPAT. FASEB J 2003;17:A445.

    Google Scholar 

  110. Feldman S, Weidenfeld J. Involvement of endogeneous glutamate in the stimulatory effect of norepinephrine and serotonin on the hypothalamo-pituitaryadrenocortical axis. Neuroendocrinology 2004;79(1):43–53.

    PubMed  CAS  Google Scholar 

  111. Serres F, Li Q, Garcia F, et al. Evidence that G(z)-proteins couple to hypothalamic 5-HT(1A) receptors in vivo. J Neurosci 2000;20(9):3095–103.

    PubMed  CAS  Google Scholar 

  112. Appel NM, Mitchell WM, Garlick RK, et al. Autoradiographic characterization of (+-)-1-(2,5-dimethoxy-4-[125I] iodophenyl)-2-aminopropane ([125I]DOI) binding to 5-HT2 and 5-HT1c receptors in rat brain. J Pharmacol Exp Ther 1990;255(2):843–57.

    PubMed  CAS  Google Scholar 

  113. Zhang Y, Damjanoska KJ, Carrasco GA, et al. Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI. J Neurosci 2002;22(21):9635–42.

    PubMed  CAS  Google Scholar 

  114. Owens MJ, Knight DL, Ritchie JC, et al. The 5-hydroxytryptamine2 agonist, (+-)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane stimulates the hypothalamic-pituitary-adrenal (HPA) axis. I. Acute effects on HPA axis activity and corticotropin-releasing factor-containing neurons in the rat brain. J Pharmacol Exp Ther 1991;256(2):787–94.

    PubMed  CAS  Google Scholar 

  115. Koenig JI, Gudelsky GA, Meltzer HY. Stimulation of corticosterone and betaendorphin secretion in the rat by selective 5-HT receptor subtype activation. Eur J Pharmacol 1987;137(1):1–8.

    PubMed  CAS  Google Scholar 

  116. King BH, Brazell C, Dourish CT, et al. MK-212 increases rat plasma ACTH concentration by activation of the 5-HT1C receptor subtype. Neurosci Lett 1989;105(1–2):174–6.

    PubMed  CAS  Google Scholar 

  117. Fuller RW, Snoddy HD. Serotonin receptor subtypes involved in the elevation of serum corticosterone concentration in rats by direct-and indirect-acting serotonin agonists. Neuroendocrinology 1990;52(2):206–11.

    PubMed  CAS  Google Scholar 

  118. Rittenhouse PA, Bakkum EA, Levy AD, et al. Evidence that ACTH secretion is regulated by serotonin2A/2C (5-HT2A/2C) receptors. J Pharmacol Exp Ther 1994;271(3):1647–55.

    PubMed  CAS  Google Scholar 

  119. Van de Kar LD, Javed A, Zhang Y, et al. 5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. J Neurosci 2001;21(10):3572–9.

    PubMed  Google Scholar 

  120. Gronfier C, Simon C, Piquard F, et al. Neuroendocrine processes underlying ultradian sleep regulation in man. J Clin Endocrinol Metab 1999;84(8):2686–90.

    PubMed  CAS  Google Scholar 

  121. Holsboer F, von Bardeleben U, Steiger A. Effects of intravenous corticotropinreleasing hormone upon sleep-related growth hormone surge and sleep EEG in man. Neuroendocrinology 1988;48(1):32–8.

    PubMed  CAS  Google Scholar 

  122. Ehlers CL, Reed TK, Henriksen SJ. Effects of corticotropin-releasing factor and growth hormone-releasing factor on sleep and activity in rats. Neuroendocrinology 1986;42(6):467–74.

    PubMed  CAS  Google Scholar 

  123. Chang FC, Opp MR. Blockade of corticotropin-releasing hormone receptors reduces spontaneous waking in the rat. Am J Physiol 1998;275(3 Pt 2):R793–802.

    PubMed  CAS  Google Scholar 

  124. Chang FC, Opp MR. A corticotropin-releasing hormone antisense oligodeoxynucleotide reduces spontaneous waking in the rat. Regul Pept 2004;117(1):43–52.

    PubMed  CAS  Google Scholar 

  125. Gillin JC, Jacobs LS, Snyder F, et al. Effects of ACTH on the sleep of normal subjects and patients with Addison’s disease. Neuroendocrinology 1974;15(1):21–31.

    PubMed  CAS  Google Scholar 

  126. Steiger A, Guldner J, Knisatschek H, et al. Effects of an ACTH/MSH(4-9) analog (HOE 427) on the sleep EEG and nocturnal hormonal secretion in humans. Peptides 1991;12(5):1007–10.

    PubMed  CAS  Google Scholar 

  127. Born J, DeKloet ER, Wenz H, et al. Gluco-and antimineralocorticoid effects on human sleep: a role of central corticosteroid receptors. Am J Physiol 1991;260(2 Pt 1):E183–8.

    PubMed  CAS  Google Scholar 

  128. Friess E, U VB, Wiedemann K, et al. Effects of pulsatile cortisol infusion on sleep-EEG and nocturnal growth hormone release in healthy men. J Sleep Res 1994;3(2):73–79.

    PubMed  Google Scholar 

  129. Steiger A. Sleep and the hypothalamo-pituitary-adrenocortical system. Sleep Med Rev 2002;6(2):125–38.

    PubMed  Google Scholar 

  130. Orosco M, Rouch C, De Saint-Hilaire Z, et al. Dynamic changes in hypothalamic monoamines during sleep/wake cycles assessed by parallel EEG and microdialysis in the rat. J Sleep Res 1995;4(3):144–149.

    PubMed  Google Scholar 

  131. Ludwig M. Dendritic release of vasopressin and oxytocin. J Neuroendocrinol 1998;10(12):881–95.

    PubMed  CAS  Google Scholar 

  132. Sabatier N, Caquineau C, Douglas AJ, et al. Oxytocin released from magnocellular dendrites: a potential modulator of alpha-melanocyte-stimulating hormone behavioral actions? Ann N Y Acad Sci 2003;994:218–24.

    PubMed  CAS  Google Scholar 

  133. Bealer SL, Crowley WR. Neurotransmitter interaction in release of intranuclear oxytocin in magnocellular nuclei of the hypothalamus. Ann N Y Acad Sci 1999; 897:182–91.

    PubMed  CAS  Google Scholar 

  134. Sawchenko PE, Swanson LW, Steinbusch HW, et al. The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res 1983;277(2):355–60.

    PubMed  CAS  Google Scholar 

  135. Saphier D. Paraventricular nucleus magnocellular neuronal responses following electrical stimulation of the midbrain dorsal raphe. Exp Brain Res 1991;85(2):359–63.

    PubMed  CAS  Google Scholar 

  136. Van de Kar LD, Rittenhouse PA, Li Q, et al. Hypothalamic paraventricular, but not supraoptic neurons, mediate the serotonergic stimulation of oxytocin secretion. Brain Res Bull 1995;36(1):45–50.

    PubMed  Google Scholar 

  137. Saydoff JA, Carnes M, Brownfield MS. The role of serotonergic neurons in intravenous hypertonic saline-induced secretion of vasopressin, oxytocin, and ACTH. Brain Res Bull 1993;32:567–572.

    PubMed  CAS  Google Scholar 

  138. Bagdy G, Kalogeras KT. Stimulation of 5-HT1A and 5-HT2/5-HT1C receptors induce oxytocin release in the male rat. Brain Res 1993;611(2):330–2.

    PubMed  CAS  Google Scholar 

  139. Wright DE, Seroogy KB, Lundgren KH, et al. Comparative localization of serotonin1A, 1C and 2receptor subtypes mRNA in rat brain. J Comp Neurol 1995; 351:357–373.

    PubMed  CAS  Google Scholar 

  140. Lancel M, Kromer S, Neumann ID. Intracerebral oxytocin modulates sleepwake behaviour in male rats. Regul Pept 2003;114(2–3):145–52.

    PubMed  CAS  Google Scholar 

  141. Neumann ID, Kromer SA, Toschi N, et al. Brain oxytocin inhibits the (re)activity of the hypothalamo-pituitary-adrenal axis in male rats: involvement of hypothalamic and limbic brain regions. Regul Pept 2000;96(1–2):31–8.

    PubMed  CAS  Google Scholar 

  142. Emiliano AB, Fudge JL. From galactorrhea to osteopenia: rethinking serotoninprolactin interactions. Neuropsychopharmacology 2004;29(5):833–46.

    PubMed  CAS  Google Scholar 

  143. Samson WK, Taylor MM, Baker JR. Prolactin-releasing peptides. Regul Pept 2003;114(1):1–5.

    PubMed  CAS  Google Scholar 

  144. Freeman ME, Kanyicska B, Lerant A, et al. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000;80(4):1523–631.

    PubMed  CAS  Google Scholar 

  145. Mogg RJ, Samson WK. Interactions of dopaminergic and peptidergic factors in the control of prolactin release. Endocrinology 1990;126(2):728–35.

    PubMed  CAS  Google Scholar 

  146. Breton C, Pechoux C, Morel G, et al. Oxytocin receptor messenger ribonucleic acid: characterization, regulation, and cellular localization in the rat pituitary gland. Endocrinology 1995;136(7):2928–36.

    PubMed  CAS  Google Scholar 

  147. Kamberi IA, Mical RS, Porter JC. Effects of melatonin and serotonin on the release of FSH and prolactin. Endocrinology 1971;88(6):1288–93.

    PubMed  CAS  Google Scholar 

  148. Rittenhouse PA, Levy AD, Li Q, et al. Neurons in the hypothalamic paraventricular nucleus mediate the serotonergic stimulation of prolactin secretion via 5-HT1c/2 receptors. Endocrinology 1993;133(2):661–7.

    PubMed  CAS  Google Scholar 

  149. Quattrone A, Schettini G, Di Renzo G, et al. Effect of midbrain raphe lesion or 5,7-dihydroxytryptamine treatment on the prolactin-releasing action of quipazine and D-fenfluramine in rats. Brain Res 1979;174:71–79.

    PubMed  CAS  Google Scholar 

  150. Van de Kar LD, Bethea CL. Pharmacological evidence that serotonergic stimulation of prolactin secretion is mediated via the dorsal raphe nucleus. Neuroendocrinology 1982;35(4):225–30.

    PubMed  Google Scholar 

  151. Barofsky AL, Nash JF, Meltzer HY. Dorsal raphe-hypothalamic projections provide the stimulatory serotonergic input to suckling-induced prolactin release. Endocrinology 1983;113:1894–1903.

    PubMed  CAS  Google Scholar 

  152. Bagdy G, Makara GB. Hypothalamic paraventricular nucleus lesions differentially affect serotonin-1A (5-HT1A) and 5-HT2 receptor agonist-induced oxytocin, prolactin, and corticosterone responses. Endocrinology 1994;134(3):1127–31.

    PubMed  CAS  Google Scholar 

  153. Lesch KP. 5-HT1A receptor responsivity in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry 1991;15(6):723–33.

    PubMed  CAS  Google Scholar 

  154. Lesch KP, Rupprecht R, Poten B, et al. Endocrine responses to 5-hydroxytryptamine-1A receptor activation by ipsapirone in humans. Biol Psychiatry 1989;26(2):203–5.

    PubMed  CAS  Google Scholar 

  155. Dinan TG, Barry S, Yatham LN, et al. The reproducibility of the prolactin response to buspirone: relationship to the menstrual cycle. Int Clin Psychopharmacol 1990;5(2):119–23.

    PubMed  CAS  Google Scholar 

  156. Cowen PJ, Anderson IM, Grahame-Smith DG. Neuroendocrine effects of azapirones. J Clin Psychopharmacol 1990;10(3 Suppl):21S–25S.

    PubMed  CAS  Google Scholar 

  157. Anderson IM, Cowen PJ. Effect of pindolol on endocrine and temperature responses to buspirone in healthy volunteers. Psychopharmacology (Berl) 1992; 106(3):428–32.

    PubMed  CAS  Google Scholar 

  158. Di Sciullo A, Bluet-Pajot MT, Mounier F, et al. Changes in anterior pituitary hormone levels after serotonin 1A receptor stimulation. Endocrinology 1990; 127(2):567–72.

    PubMed  Google Scholar 

  159. Kellar KJ, Hulihan-Giblin BA, Mulroney SE, et al. Stimulation of serotonin1A receptors increases release of prolactin in the rat. Neuropharmacology 1992; 31(7):643–7.

    PubMed  CAS  Google Scholar 

  160. Nash JF, Meltzer HY. Effect of gepirone and ipsapirone on the stimulated and unstimulated secretion of prolactin in the rat. J Pharmacol Exp Ther 1989; 249(1):236–41.

    PubMed  CAS  Google Scholar 

  161. Simonovic M, Gudelsky GA, Meltzer HY. Effect of 8-hydroxy-2-(di-n-propylamino) tetralin on rat prolactin secretion. J Neural Transm 1984;59(2):143–9.

    PubMed  CAS  Google Scholar 

  162. Van de Kar LD, Lorens SA, Urban JH, et al. Effect of selective serotonin (5-HT) agonists and 5-HT2 antagonist on prolactin secretion. Neuropharmacology 1989;28(3):299–305.

    PubMed  Google Scholar 

  163. Obal F, Jr., Opp M, Cady AB, et al. Prolactin, vasoactive intestinal peptide, and peptide histidine methionine elicit selective increases in REM sleep in rabbits. Brain Res 1989;490(2):292–300.

    PubMed  CAS  Google Scholar 

  164. Roky R, Valatx JL, Jouvet M. Effect of prolactin on the sleep-wake cycle in the rat. Neurosci Lett 1993;156(1–2):117–20.

    PubMed  CAS  Google Scholar 

  165. Obal F, Jr., Payne L, Kacsoh B, et al. Involvement of prolactin in the REM sleeppromoting activity of systemic vasoactive intestinal peptide (VIP). Brain Res 1994;645(1–2):143–9.

    PubMed  CAS  Google Scholar 

  166. Obal F, Jr., Kacsoh B, Bredow S, et al. Sleep in rats rendered chronically hyperprolactinemic with anterior pituitary grafts. Brain Res 1997;755(1):130–6.

    PubMed  CAS  Google Scholar 

  167. Zhang SQ, Kimura M, Inoue S. Effects of prolactin-releasing peptide (PrRP) on sleep regulation in rats. Psychiatry Clin Neurosci 2000;54(3):262–4.

    PubMed  CAS  Google Scholar 

  168. Obal F, Jr., Kacsoh B, Alfoldi P, et al. Antiserum to prolactin decreases rapid eye movement sleep (REM sleep) in the male rat. Physiol Behav 1992;52(6):1063–8.

    PubMed  CAS  Google Scholar 

  169. Roky R, Valatx JL, Paut-Pagano L, et al. Hypothalamic injection of prolactin or its antibody alters the rat sleep-wake cycle. Physiol Behav 1994;55(6):1015–9.

    PubMed  CAS  Google Scholar 

  170. Bodosi B, Obal F, Jr., Gardi J, et al. An ether stressor increases REM sleep in rats: possible role of prolactin. Am J Physiol Regul Integr Comp Physiol 2000;279(5):R1590–8.

    PubMed  CAS  Google Scholar 

  171. Walsh RJ, Slaby FJ, Posner BI. A receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid. Endocrinology 1987;120(5):1846–50.

    PubMed  CAS  Google Scholar 

  172. Roky R, Obal F, Jr., Valatx JL, et al. Prolactin and rapid eye movement sleep regulation. Sleep 1995;18(7):536–42.

    PubMed  CAS  Google Scholar 

  173. Muller EE, Locatelli V, Cocchi D. Neuroendocrine control of growth hormone secretion. Physiol Rev 1999;79(2):511–607.

    PubMed  CAS  Google Scholar 

  174. Lin-Su K, Wajnrajch MP. Growth Hormone Releasing Hormone (GHRH) and the GHRH Receptor. Rev Endocr Metab Disord 2002;3(4):313–23.

    PubMed  CAS  Google Scholar 

  175. Romero MI, Phelps CJ. Identification of growth hormone-releasing hormone and somatostatin neurons projecting to the median eminence in normal and growth hormone-deficient Ames dwarf mice. Neuroendocrinology 1997;65(2):107–16.

    PubMed  CAS  Google Scholar 

  176. Merchenthaler I, Vigh S, Schally AV, et al. Immunocytochemical localization of growth hormone-releasing factor in the rat hypothalamus. Endocrinology 1984; 114(4):1082–5.

    PubMed  CAS  Google Scholar 

  177. Kawano H, Daikoku S. Somatostatin-containing neuron systems in the rat hypothalamus: retrograde tracing and immunohistochemical studies. J Comp Neurol 1988;271(2):293–9.

    PubMed  CAS  Google Scholar 

  178. Smith CE, Ware CJ, Cowen PJ. Pindolol decreases prolactin and growth hormone responses to intravenous L-tryptophan. Psychopharmacology (Berl) 1991; 103(1):140–2.

    PubMed  CAS  Google Scholar 

  179. Smythe GA, Lazarus L. Growth hormone regulation by melatonin and serotonin. Nature 1973;244(5413):230–1.

    PubMed  CAS  Google Scholar 

  180. Vijayan E, Krulich L, McCann SM. Stimulation of growth hormone release by intraventricular administration of 5HT or quipazine in unanesthetized male rats. Proc Soc Exp Biol Med 1978;159(2):210–2.

    PubMed  CAS  Google Scholar 

  181. Arnold MA, Fernstrom JD. L-Tryptophan injection enhances pulsatile growth hormone secretion in the rat. Endocrinology 1981;108(1):331–5.

    PubMed  CAS  Google Scholar 

  182. Katz LM, Nathan L, Kuhn CM, et al. Inhibition of GH in maternal separation may be mediated through altered serotonergic activity at 5-HT2A and 5-HT2C receptors. Psychoneuroendocrinology 1996;21(2):219–35.

    PubMed  CAS  Google Scholar 

  183. Nakayama T, Suhara T, Okubo Y, et al. In vivo drug action of tandospirone at 5-HT1A receptor examined using positron emission tomography and neuroendocrine response. Psychopharmacology (Berl) 2002;165(1):37–42.

    PubMed  CAS  Google Scholar 

  184. Newman ME, Li Q, Gelfin Y, et al. Low doses of ipsapirone increase growth hormone but not oxytocin secretion in normal male and female subjects. Psychopharmacology (Berl) 1999;145(1):99–104.

    PubMed  CAS  Google Scholar 

  185. Pitchot W, Wauthy J, Hansenne M, et al. Hormonal and temperature responses to the 5-HT1A receptor agonist flesinoxan in normal volunteers. Psychopharmacology (Berl) 2002;164(1):27–32.

    PubMed  CAS  Google Scholar 

  186. Pitchot W, Wauthy J, Legros JJ, et al. Hormonal and temperature responses to flesinoxan in normal volunteers: an antagonist study. Eur Neuropsychopharmacol 2004;14(2):151–5.

    PubMed  CAS  Google Scholar 

  187. McAllister-Williams RH, Massey AE. EEG effects of buspirone and pindolol: a method of examining 5-HT1A receptor function in humans. Psychopharmacology (Berl) 2003;166(3):284–93.

    PubMed  CAS  Google Scholar 

  188. Meller E, Bohmaker K. Differential receptor reserve for 5-HT1A receptor-mediated regulation of plasma neuroendocrine hormones. J Pharmacol Exp Ther 1994;271(3):1246–52.

    PubMed  CAS  Google Scholar 

  189. Murakami Y, Kato Y, Kabayama Y, et al. Involvement of growth hormone (GH)-releasing factor in GH secretion induced by serotoninergic mechanisms in conscious rats. Endocrinology 1986;119(3):1089–92.

    PubMed  CAS  Google Scholar 

  190. Uvnas-Moberg K, Hillegaart V, Alster P, et al. Effects of 5-HT agonists, selective for different receptor subtypes, on oxytocin, CCK, gastrin and somatostatin plasma levels in the rat. Neuropharmacology 1996;35(11):1635–40.

    PubMed  CAS  Google Scholar 

  191. Bjorkstrand E, Ahlenius S, Smedh U, et al. The oxytocin receptor antagonist 1-deamino-2-D-Tyr-(OEt)-4-Thr-8-Orn-oxytocin inhibits effects of the 5-HT1A receptor agonist 8-OH-DPAT on plasma levels of insulin, cholecystokinin and somatostatin. Regul Pept 1996;63(1):47–52.

    PubMed  CAS  Google Scholar 

  192. Steiger A. Sleep and endocrinology. J Intern Med 2003;254(1):13–22.

    PubMed  CAS  Google Scholar 

  193. Steiger A, Holsboer F. Neuropeptides and human sleep. Sleep 1997;20(11): 1038–52.

    PubMed  CAS  Google Scholar 

  194. Krueger JM, Fang J, Hansen MK, et al. Humoral Regulation of Sleep. News Physiol Sci 1998;13:189–194.

    PubMed  CAS  Google Scholar 

  195. Perras B, Marshall L, Kohler G, et al. Sleep and endocrine changes after intranasal administration of growth hormone-releasing hormone in young and aged humans. Psychoneuroendocrinology 1999;24(7):743–57.

    PubMed  CAS  Google Scholar 

  196. Steiger A, Guldner J, Hemmeter U, et al. Effects of growth hormone-releasing hormone and somatostatin on sleep EEG and nocturnal hormone secretion in male controls. Neuroendocrinology 1992;56(4):566–73.

    PubMed  CAS  Google Scholar 

  197. Obal F, Jr., Alfoldi P, Cady AB, et al. Growth hormone-releasing factor enhances sleep in rats and rabbits. Am J Physiol 1988;255(2 Pt 2):R310–6.

    PubMed  CAS  Google Scholar 

  198. Kerkhofs M, Van Cauter E, Van Onderbergen A, et al. Sleep-promoting effects of growth hormone-releasing hormone in normal men. Am J Physiol 1993;264(4 Pt 1):E594–8.

    PubMed  CAS  Google Scholar 

  199. Obal F, Jr., Floyd R, Kapas L, et al. Effects of systemic GHRH on sleep in intact and hypophysectomized rats. Am J Physiol 1996;270(2 Pt 1):E230–7.

    PubMed  CAS  Google Scholar 

  200. Obal F, Jr., Alt J, Taishi P, et al. Sleep in mice with nonfunctional growth hormone-releasing hormone receptors. Am J Physiol Regul Integr Comp Physiol 2003;284(1):R131–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Crane, J.W., Van De Kar, L.D. (2006). Serotonin and Neuroendocrine Regulation. In: Cardinali, D.P., Pandi-Perumal, S.R. (eds) Neuroendocrine Correlates of Sleep/Wakefulness. Springer, Boston, MA. https://doi.org/10.1007/0-387-23692-9_7

Download citation

Publish with us

Policies and ethics