Skip to main content

Dispersion-Reinforced Glass and Glass-Ceramic Matrix Composites

  • Chapter
Handbook of Ceramic Composites

Abstract

Glass and glass-ceramic matrix composites with dispersion reinforcement, namely those containing whisker, platelet, chopped fibres or particles, are considered in this Chapter, reviewing their fabrication, microstructural characterisation, properties and applications. The Chapter is mainly devoted to composite systems developed to improve the thermomechanical properties of the glass (or glass-ceramic) matrix, in order to fabricate novel materials suitable for structural and load-bearing applications. The use of the composites in mechanical engineering and machinery, electronics, aerospace, chemical, high-temperature and wear resistance applications as well as in the biomedical field and in industrial recycling technologies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. D. B. Binns, Some Physical Properties of Two-Phase Crystal-Glass Solids, in Science of Ceramics, Vol. 1. G. H. Stewart, ed. Academic Press, New York (1962). pp. 315–334.

    Google Scholar 

  2. D. P. H. Hasselman and R. M. Fulrath, Effect of Dispersions on Young’s Modulus of a Glass, J. Am. Ceram. Soc. 48, 218–219 (1965).

    Article  CAS  Google Scholar 

  3. D. P. H. Hasselman and R. M. Fulrath, Effect of Spherical Tungsten Dispersions on Young’s Modulus of a Glass, J. Am. Ceram. Soc. 48, 548–549 (1965).

    Article  CAS  Google Scholar 

  4. G. Einmahl, Strength in a Two-Phase Model System with Fiber Reinforcement, M. S. Thesis, University of California, Berkeley (1966).

    Google Scholar 

  5. V. D. Krstic, On the Fracture of Brittle-Matrix/Ductile-Particle Composites, Phil. Mag. A48, 695–708 (1983).

    Google Scholar 

  6. W. J. Frey and J. D. Mackenzie, Mechanical Properties of Selected Glass-Crystal Composites, J. Mater. Sci. 2, 124–130 (1967).

    Article  CAS  Google Scholar 

  7. T. L. Jessen, J. J. Mecholsky and R. H. Moore, Fast and Slow Fracture in Glass Composites Reinforced with Fe-Ni-Co Alloy, Ceram. Bull. 65, 377–381 (1986).

    CAS  Google Scholar 

  8. K. P. Gadkaree and K. Chyung, Silicon Carbide Whisker-Reinforced Glass and Glass-ceramic Matrix Composites, Am. Ceram. Soc. Bull. 65, 370–376 (1986).

    CAS  Google Scholar 

  9. R. W. Davidge and T. J. Green, The Strength of Two-Phase Ceramic/Glass Materials, J. Mater. Sci. 3, 629–634 (1968).

    Article  CAS  Google Scholar 

  10. R. A. Haber, G. E. Hannon and J. B. Wachtman, Fracture Strength and Toughness in Particulate Reinforced Glass Composites: Effects of Microstructural Variations, in: Ceramic Materials and Components for Engines, V. S. Tennery ed., Am. Ceram. Soc. (1989), pp. 927–936.

    Google Scholar 

  11. T. B. Troczynski, P. S. Nicholson and C. E. Rucker, Inclusion-Size-Independent Strength of Glass/Particulate-Metal Composites, J. Am. Ceram. Soc. 71, C-276–C-279 (1988).

    Article  CAS  Google Scholar 

  12. J. P. Lucas, L. E. Toth and W.W. Geberich, A Novel Technique for Producing Fine Metal Fibres for Enhancing Mechanical Properties of Glass Matrix Composites, J. Am. Ceram. Soc. 63, 280–285 (1980).

    Article  CAS  Google Scholar 

  13. G. Baran, M. Degrange, C. Roques-Carmes and D. Wehbi, Fracture Toughness of Metal Reinforced Glass Composites, J. Mat. Sci. 25, 4211–4215 (1990).

    Article  CAS  Google Scholar 

  14. R. H. Dunga, J. A. Gilbert and J. C. Smith, Preparation and Mechanical Properties of Composites of Fused SiO2 and W Fibres, J. Am. Ceram. Soc. 56, 345 (1973).

    Article  Google Scholar 

  15. J. C. Swearengen, E. K. Beauchamp and R. J. Eagan Fracture Toughness of Reinforced Glasses, in Fracture Mechanics of Ceramics, Vol. IV. R. C. Bradt D. P. H. Hasselman and F. F. Lange ed., Plenum Press, New York, London (1978) pp. 973–987.

    Google Scholar 

  16. A. R. Boccaccini, G. Ondracek and C. Syhre, Borosilicate Glass Matrix Composites Reinforced with Short Metal Fibres, Glastech. Ber. Glass Sci. Technol. 67, 16–20 (1994).

    Google Scholar 

  17. A. R. Boccaccini and P. A. Trusty, Toughening and Strengthening of Glass by Al2O3 Platelets, J. Mat. Sci. Lett. 15, 60–63 (1996).

    Article  CAS  Google Scholar 

  18. J. Wu, B. Li, J. Guo, The Influence of Addition of AlN Particles on Mechanical Properties of SiO2 Matrix Composites Doped with AlN Particles, Mat. Lett. 41, 145–148 (1999).

    Article  CAS  Google Scholar 

  19. A. P. N. de Oliveira, T. Manfredini, G. C. Pellacani, A. Bonamartini Corradi and L. Di Landro, Al2O3 Particulate-Reinforced LZS Glass-Ceramic Matrix Composites, in: 9 th CIMTEC World Ceramics Congress Part C, P. Vincenzini ed., Techna Srl (1999) pp. 707–714.

    Google Scholar 

  20. E. Claxton, B. A. Taylor, R. D. Rawlings, Processing and Properties of a Bioactive Glass-ceramic Reinforced with Ductile Silver Particles, J. Mat. Sci. 37, 3725–3732 (2002).

    Article  CAS  Google Scholar 

  21. F. Ye, J. C. Gu, Y. Zhou, M. Iwasa, Synthesis of BaAl2Si2O8 Glass-ceramic by a Sol-gel Method and the Fabrication of SiCpl/BaAl2Si2O8 Composites, J. Europ. Ceram. Soc. 23, 2203–2209 (2003).

    Article  CAS  Google Scholar 

  22. T. Rouxel, B. Baron, P. Verdier and T. Sakuma, SiC Particle Reinforced Oxynitride Glass: Stress Relaxation, Creep and Strain-Rate Imposed Experiments, Acta Mater. 46, 6115–6130 (1998).

    Article  CAS  Google Scholar 

  23. E. Zhang and D. P. Thompson, Fracture Behaviour of SiC Fibre-Reinforced Nitrogen Glass Matrix Composites, J. Mat. Sci. 31, 6423–6429 (1996).

    Article  CAS  Google Scholar 

  24. F. Pernot and R. Rogier, Mechanical Properties of Phosphate Glass-Ceramic-316L Stainless Steel Composites, J. Mat. Sci. 28, 6676–6682 (1993).

    Article  CAS  Google Scholar 

  25. G. Wen, G. L. Wu, T. Q. Lei, Y. Zhou, Z. X. Guo, Co-enhanced SiO2-BN Ceramics for High-Temperature Dielectric Applications, J. Europ. Ceram. Soc. 20, 1923–1928 (2000).

    Article  CAS  Google Scholar 

  26. R. A. J. Sambell, D. H. Bowen and D. C. Phillips, Carbon Fibre Composites with Ceramic and Glass Matrices, Part I: Discontinuous Fibres, J. Mat. Sci. 7, 663–675 (1972).

    Article  CAS  Google Scholar 

  27. D. Qi and C. G. Pantano, Effects of Composite Processing on the Performance of Carbon Fibre/Glass Matrix Composites, Ceram. Eng. Sci. Proc. 13, 863–872 (1992).

    CAS  Google Scholar 

  28. K. Ogi, N. Takeda and K. M. Prewo, Fracture Process of Thermally Shocked Discontinuous Fibre-Reinforced Glass Matrix Composites Under Tensile Loading, J. Mat. Sci. 32, 6153–6162 (1997).

    Article  CAS  Google Scholar 

  29. K. M. Prewo, A Compliant, High Failure Strain, Fibre-Reinforced Glass-Matrix Composite, J. Mat. Sci. 17, 3549–3563 (1982).

    Article  CAS  Google Scholar 

  30. K. Langhans and E. Roeder, Manufacture of Short-Fibre Reinforced Glasses by Extrusion and Examinations Regarding their Structure and their Mechanical Properties, Glastech. Ber. 65, 103–111 (1992).

    CAS  Google Scholar 

  31. M. J. Pascual, A. Duran, L. Pascual, Sintering Behaviour of Borosilicate glass-ZrO2 Fibre Composite Materials, J. Europ. Ceram. Soc. 22, 1513–1524 (2002).

    Article  CAS  Google Scholar 

  32. J. S. Lyons and T. L. Starr, Strength and Toughness of Slip-Cast Fused-Silica Composites, J. Am. Ceram. Soc. 77, 1673–1675 (1994).

    Article  CAS  Google Scholar 

  33. K. P. Gadkaree, Whisker Reinforcement of Glass-Ceramics, J. Mat. Sci 26, 4845–4854 (1991).

    Article  CAS  Google Scholar 

  34. H. M. Jang, K. S. Kim and Ch. J. Jung, Development of SiC-whisker-reinforced lithium aluminosilicate matrix composites by a mixed colloidal processing route, J. Am. Ceram. Soc. 75, 2883–2886 (1992).

    Article  CAS  Google Scholar 

  35. F. D. Gac, J. J. Petrovic, J. V. Milewski and P. D. Shalek, Performance of Commercial and Research Grade SiC Whiskers in a Borosilicate Glass Matrix, Ceram. Eng. Sci. Proc. 7, 978–982 (1986).

    CAS  Google Scholar 

  36. V. S. R. Murthy, K. Srikanth and C. B. Raju, Abrasive Wear Behaviour of SiC Whisker-Reinforced Silicate Matrix Composites, Wear 223, 79–92 (1998).

    Article  CAS  Google Scholar 

  37. F. Ye, J. M. Yang, L. T. Zhang, W. C. Zhou, Y. Zhou, T. C. Lei, Fracture Behaviour of SiC-Whisker-Reinforced Barium Aluminosilicate Glass-ceramic Matrix Composites, J. Am. Ceram. Soc. 84, 881–883 (2001).

    CAS  Google Scholar 

  38. F. Yu, C. R. Ortiz-Long and K. W. White, The Microstructural Characterization of an in situ Grown Si3N4 Whisker-Reinforced BAS Glass-Ceramic Matrix Composite, Ceram. Trans. 74, 203–214 (1996).

    CAS  Google Scholar 

  39. I. Wadsworth and R. Stevens, Strengthening and Toughening of Cordierite by the Addition of Silicon Carbide Whiskers, Platelets and Particles, J. Mat. Sci. 26, 6800–6808 (1991).

    CAS  Google Scholar 

  40. A. R. Hyde and G. Partridge, Fabrication of Particulate, Platelet, Whisker and Continuous Fibre Reinforced Glass, Glass-ceramic and Ceramic Materials, Br. Ceram. Proc. 45, 221–227 (1990).

    Google Scholar 

  41. R. Chaim and V. Talanker, Microstructure and Mechanical Properties of SiC Platelet/Cordierite Glass-Ceramic Composites, J. Am. Ceram. Soc. 78, 166–172 (1995).

    Article  CAS  Google Scholar 

  42. E. Roeder H.-J. Mayer and M. Huber, Theoretische und experimentelle Analyse des Ausrichtungsverhaltens plättchenförmiger Verstärkungskomponenten beim Strangpressen von Verbundkörpern mit Glasmatrix, Mat.-wiss. und Werkstofftech. 27, 37–44 (1996).

    Article  CAS  Google Scholar 

  43. Y. Cheng and D. P. Thompson, ZrO2 Toughened Glass-Ceramic Composites Prepared by Hot-Pressing Route, Silicate Industriels 12, 5–14 (1991).

    Google Scholar 

  44. M. Nogami and M. Tomozawa, ZrO2-Transformation Toughened Glass-Ceramics Prepared by the Sol-gel Process from Metal Alkoxides, J. Am. Ceram. Soc. 69, 99–102 (1986).

    Article  CAS  Google Scholar 

  45. A. R. Boccaccini D. H. Pearce, Toughening of Glass by a Piezoelectric Secondary Phase, J. Am. Ceram. Soc. 86, 180–182 (2003).

    Article  Google Scholar 

  46. D. O’Sullivan, C. Courtois, A. Leriche and B. Thierry, Properties of Cordierite-Silicon Carbide Nanocomposites, Key Eng. Mat. Vols. 132–136, 1997–2000 (1997).

    Google Scholar 

  47. N. K. Schneider, C. Mooney, B. Baron and S. Hampshire, Oxynitride Glass Composites Containing Nanosize SiC, Br. Ceram. Proc. 60[1], 401–402 (1999).

    Google Scholar 

  48. J. DiMaio, S. Rhyne, Z. Yang, K. Fu, R. Czerw, J. Xu, S. Webster, Y.-P. Sun, D. L. Carroll and J. Ballato, Transparent Silica Glasses Containing Single Walled Carbon Nanotubes, Information Sciences 149, 69–73 (2003).

    Article  Google Scholar 

  49. T. Seeger, T. Köhler, T. Frauenheim, N. Grober, M. Rüuhle, M. Terrones, G. Seifert, Nanotube Composites: Novel SiO2 Coated Carbon Nanotubes, Chem. Commun. 1, 34–35 (2002).

    Article  CAS  Google Scholar 

  50. A. R. Boccaccini, D. B. Acevedo, G. Brusatin, and P. Colombo, Borosilicate glass matrix composites containing multi-wall carbon nanotubes, J. Europ. Ceram. Soc. (2004) in press.

    Google Scholar 

  51. B. R. Zhang, M. Ferraris and F. Marino, Borosilicate Glass-Ceramic Composites Reinforced by Ni3Al Ribbons and Particles, J. Europ. Ceram. Soc. 17, 1381–1386 (1997).

    Article  CAS  Google Scholar 

  52. D. R. Biswas, Strength and Fracture Toughness of Indented Glass-Nickel Compacts, J. Mat. Sci. 15, 1696–1700 (1980).

    Article  CAS  Google Scholar 

  53. R. U. Vaidya, C. Norris and K. N. Subramanian, Interfacial Effects in a Metallic-Glass Ribbon Reinforced Glass-Ceramic Matrix Composite, J. Mat. Sci. 27, 4957–4960 (1992).

    Article  CAS  Google Scholar 

  54. E. Verné, M. Ferraris, A. Ventrella, L. Paracchini, A. Krajewski and A. Ravaglioli, Sintering and Plasma Spray Deposition of Bioactive Glass-Matrix Composites for Medical Applications, J. Europ. Ceram. Soc. 18, 363–372 (1998).

    Article  Google Scholar 

  55. I. Dlouhy, M. Rheinish, A. R. Boccaccini and J. F. Knott, Fracture Characteristics of Borosilicate Glasses Reinforced by Ductile Metallic Particles, Fatigue and Fracture of Engineering Materials and Structures 20, 1235–1253 (1997).

    CAS  Google Scholar 

  56. A. Tewari, V. S. R. Murthy and G. S. Murty, Rheological Behaviour of SiC (Particulate)-Borosilicate Composites at Elevated Temperatures, J. Mat. Sci. Lett. 15, 227–229 (1996).

    Article  CAS  Google Scholar 

  57. C. H. Drummond III, Deformation of Microstructures Containing a Glassy Phase, J. Noncryst. Sol. 196, 326–333 (1996).

    Article  CAS  Google Scholar 

  58. A. B. R. Verma, V. S. R. Murthy and G. S. Murty, Microstructure and Compressive Strength of SiC Platelet Reinforced Borosilicate Composites, J. Am. Ceram. Soc. 78, 2732–2736 (1995).

    Article  CAS  Google Scholar 

  59. R. R. Tummala, Ceramic and Glass-Ceramic Packaging in the 1990s, J. Am. Ceram. Soc. 74, 895–908 (1991).

    Article  CAS  Google Scholar 

  60. J.-J. Shyu and C.-T. Wang, Sintering and Properties of Li2O-Al2O3-4SiO2-Borosilicate Glass Composites, J. Mater. Res. 11, 2518–2527 (1996).

    CAS  Google Scholar 

  61. T. Yamaguchi and K. Lizuka, Microstructure Development in RuO2-Glass Thick-Film Resistors and Ist Effect on the Electrical Resistivity, J. Am. Ceram. Soc. 73, 1953–1957 (1990).

    Article  CAS  Google Scholar 

  62. H. Shiomi and H. Furukawa, Effect of Addition of Ag on the Microstructures and Electrical Properties of Sol-Gel Derived SnO2 Glass Composites, J. Mat. Sci. Mat. Elect. 11, 31–37 (2000).

    Article  CAS  Google Scholar 

  63. K. Watanabe and K. Hoshi, Crystallisation Kinetics of Fine Barium Hexaferrite, BaFe12O19, Particles in a Glass Matrix, Phys. Chem. Glasses 40, 75–78 (1999).

    CAS  Google Scholar 

  64. F. Duan, C. Fang, Z. Ding and H. Zhu, Properties and Applications of Piezoelectric Glass-Crystalline Phase Composite in the BaO-SrO-TiO2-SiO2 Sytem, Mat. Lett. 34, 184–187 (1998).

    Article  CAS  Google Scholar 

  65. S.-Y. Chang, L. Liu and S. A. Asher, Preparation and Processing of Monodisperse Colloidal Silica-Cadmium Sulfide Nanocomposites, Mat. Res. Symp. Proc. 346, 875–880 (1994).

    CAS  Google Scholar 

  66. S. H. Risbud and V. J. Leppert, Nanometer Level Characterisation of Rapidily Densified Ceramics and Glass-Semiconductor Composites, in: Ceramic Microstructures: Control at the Atomic Level, A. P. Tomsia and A. Glaeser eds., Plenum Press, New York (1998) pp. 199–207.

    Google Scholar 

  67. Y.-S. Lee and T.-Y. Tseng, Correlation of Grain Boundary Characteristics with Electrical Properties in ZnO-Glass Varistors, J. Mat. Sci.: Mat. in Electr. 9, 65–76 (1998).

    Article  CAS  Google Scholar 

  68. K. Fujiki T. Ogasawara and N. Tsubokawa, Preparation of a Silica Gel-Carbon Black Composite by the Sol-Gel Process in the Presence of Polymer-Grafted Carbon Black, J. Mat. Sci. 33, 1871–1879 (1998).

    Article  CAS  Google Scholar 

  69. P. Chakraborty, Review. Metal Nanoclusters in Glasses as Non-linear Photonic Materials, J. Mat. Sci. 33, 2235–2249 (1998).

    Article  CAS  Google Scholar 

  70. T. Burkhart, M. Mennig, H. Schmidt and A. Licciulli, Nano-sized Pd Particles in a SiO2 Matrix by Sol-Gel Processing, Mat. Res. Soc. Symp. Proc. 346 779–784 (1994).

    CAS  Google Scholar 

  71. G. C. Vezzoli, M. F. Chen and J. Caslavsky, New High Dielectric Strength Materials: Micro/Nanocomposites of Suspended Au Clusters in SiO2/SiO2-Al2O3-Li2O Gels, Ceram. Int. 23, 105–108 (1997).

    Article  CAS  Google Scholar 

  72. J. D. Mackenzie and E. Bescher, Formation and Properties of Ultrafine Particles in Glass, in Proc. XVIII International Congress on Glass, M. K. Choudhary N. T. Huff and Ch. H. Drummond III eds., San Francisco (USA), July 5–10, 1998, The American Ceramic Society, Ohio.

    Google Scholar 

  73. A. Das, T. T. Srinivasan and R. E. Newnham, Ceramic/Polymer Nanocomposite Properties for Microelectronic Packages, Mat. Res. Soc. Symp. Proc. 167, 165–175 (1990).

    CAS  Google Scholar 

  74. A. Nazeri, E. Bescher and J. D. Mackenzie, Ceramic Composites by the Sol-Gel Method: A Review, Ceram. Eng. Sci. Proc. 14[11–12], 1–19 (1993).

    CAS  Google Scholar 

  75. A. R. Hyde, Ceramic Composites, a New Generation of Materials for Mechanical and Electrical Applications, GEC J. Res. 7, 65–71 (1989).

    Google Scholar 

  76. P. Van Landuyt, D. Michel, L. Nicks, J.-M. Streydio, E. Munting and F. Delannay, Processing and Characterisation of a Biocompatible Glass Matrix Composite Reinforced with Titanium Fibres, Silicates Industriels 9–10, 257–259 (1995).

    Google Scholar 

  77. T. B. Troczynski and P. S. Nicholson, Fracture Mechanics of Titanium/Bioactive Glass-Ceramic Particulate Composites, J. Am. Ceram. Soc. 74, 1803–1806 (1991).

    Article  CAS  Google Scholar 

  78. T. B. Troczynski and P. S. Nicholson, Stress Corrosion Cracking of Bioactive Glass Composites, J. Am. Ceram. Soc. 73, 164–166 (1990).

    Article  CAS  Google Scholar 

  79. S.-J. Lee, W. M. Kriven and H.-M. Kim, Shrinkage-Free, Alumina-Glass Dental Composites via Aluminium Oxidation, J. Am. Ceram. Soc. 80, 2141–2147 (1997).

    CAS  Google Scholar 

  80. W. Hölland, Biocompatible and Bioactive Glass-Ceramics: State of the Art and New Directions, J. Non-Cryst. Solids 219, 192–197 (1997).

    Article  Google Scholar 

  81. B. R. Lawn, N. P. Padture, H. Cai and F. Guiberteau, Making Ceramics “Ductile”, Science 263, 1114–1116 (1994).

    CAS  Google Scholar 

  82. S. A. Dunn, Viscous Behaviour of Silica with Tungsten Inclusions, Ceram. Bull. 47, 554–559 (1968).

    CAS  Google Scholar 

  83. A. E. Rudovskij, P. D. Sarkisov, A. A. Ivashin and V. V. Budov, Glass Ceramic-Based Composites, in Ceramic-and Carbon-Matrix Composites. V. I. Trefilov ed., Chapman and Hall, London (1995) 255–285.

    Google Scholar 

  84. T. Kachi, T. Furuhata, N. Arai, M. Iwata and S. Kato, Innovative Glass Coating with High Emittance at High Temperatures, Ceram. Trans. Vol. 99, 137–146 (1998).

    CAS  Google Scholar 

  85. M. Dietrich, V. Verlotski, R. Vassen and D. Stoever, Metal-Glass Based Composites for Novel TBC-Systems, Mat.-wiss. u. Werkstofftech. 32, 669–672 (2001).

    Article  CAS  Google Scholar 

  86. B. Rödicker, R. Weber, P. Hellmold, P. Seidel and H. A. Maaouf, Korrelationen zwischen Gefüge und Eigenschaften von Emails, in: Proc. Conference Verbundwerkstoffe und Werkstoffverbunde, K. Friedrich ed., DGM-Informationsgesellschaft, Frankfurt, Germany (1997) 715–720.

    Google Scholar 

  87. G.V. Berdova, V. E. Gorbatenko, A. P. Zubekhin and T. A. Ionina, Synthesis and Dilatometric Investigation of High-Endurance Composite Glass-Enamel Heat Resistant Coatings, Glass and Ceramics 53, 48–50 (1996).

    Article  Google Scholar 

  88. A. P. Novaes de Oliveira and O. E. Alarcon, Microstructural Design Concepts Applied to Ceramic Glazes, Tile & Brick Int. 15, 90–94 (1999).

    Google Scholar 

  89. C. Swearengen, R. J. Eagan, Mechanical Properties of Molybdenum-Sealing Glass-Ceramics, J. Mat. Sci. 11, 1857–1866 (1976).

    Article  CAS  Google Scholar 

  90. G. Partridge, Joining Glass-Ceramics to Metals, in Joining of Ceramics, M. G. Nicholas ed., Chapman and Hall, London, New York (1990) 31–55.

    Google Scholar 

  91. I. Penkov, R. Pascova and I. Drangajova, A New Glass Ceramic Material with High Resistance to Molten Aluminium, J. Mat. Sci. Lett. 16, 1544–1546 (1997).

    Article  CAS  Google Scholar 

  92. G. H. Beall and L. R. Pinckney, Nanophase Glass-Ceramics, J. Am. Ceram. Soc. 82, 5–16 (1999).

    CAS  Google Scholar 

  93. H. Iba, T. Chang, Y. Kagawa, H. Minakuchi and K. Kanamaru, Fabrication of Optically Transparent Short Fibre-Reinforced Glass Matrix Composites, J. Am. Ceram. Soc. 79, 881–884 (1996).

    Article  CAS  Google Scholar 

  94. A. R. Boccaccini, S. Atiq, G. Helsch, Optomechanical Glass Matrix Composites, Comp. Sci. and Technol. 63, 779–783 (2003).

    Article  CAS  Google Scholar 

  95. E. G. Wolff, Thermal Expansion in Metal/Lithia-Alumina-Silica (LAS) Composites, Int. Journal of Thermophysics 9, 221–232 (1988).

    Article  CAS  Google Scholar 

  96. Y. Waku, M. Suzuki, Y. Oda and Y. Kamitoku, Electromagnetic Shielding Material, Japanese Patent 09074298 A (1997).

    Google Scholar 

  97. R. L. McGee and S. Yalvac, Random Stainless Steel Fibre Reinforced Magnesia-Alumina-Silicate Glass Matrix Composites, in Int. SAMPE Symp. Exhib. (1990) 520–532.

    Google Scholar 

  98. Ch. H. Drummond, R. D. Blume, P. Nevatia, Z. Gao and A. B. Sarko, Vitrified Glass-Ceramic Product Development From Industrial Wastes, Key Eng. Materials 132–136, 2220–2223 (1997).

    Article  Google Scholar 

  99. A. R. Boccaccini, J. Janczak, D. M. R. Taplin and M. KÖpf, The Multibarriers-System as a Materials Science Approach for Industrial Waste Disposal and Recycling: Application of Gradient and Multilayered Microstructures, Environmental Technology 17, 1193–1203 (1996).

    Article  CAS  Google Scholar 

  100. C. B. Von Schweitzer, R. D. Rawlings and P. S. Rogers, Processing and Properties of Silceram Glass-ceramic Matrix Composites Prepared by the Powder Route, in Third Euroceamics Vol. 2, P. Durán and J. F. Fernández eds., Faenza Editrice Ibérica, 1139–1144 (1993).

    Google Scholar 

  101. A. R. Boccaccini, M. Bücker, J. Bossert and K. Marszalek, Glass Matrix Composites from Coal Flyash and Waste Glass Waste Management 17, 39–45 (1997).

    Article  CAS  Google Scholar 

  102. N. M. P. Low, Fabrication of Cellular Structure Composite Material from Recycled Soda-Lime Glass and Phlogopite Mica Powders, J. Mat. Sci. 15, 1509–1517 (1980).

    Article  CAS  Google Scholar 

  103. A. R. Boccaccini, M. Köpf and W. Stumpfe, Glass-Ceramics from Filter Dusts From Waste Incinerators, Ceramics International 21, 231–235 (1995).

    Article  CAS  Google Scholar 

  104. I. Rozenstrauha, R. Cimdins, L. Berzina, D. Bajare, A. R. Boccaccini, Sintered Glass-Ceramic Matrix Composites Made from Latvian Silicate Wastes, Glass Sci. and Technol. Glastech. Ber. 75, 132–139 (2002).

    CAS  Google Scholar 

  105. M. Ferraris, M. Salvo, F. Smeacetto, L. Augier, L. Barbieri, A. Corradi, I. Lancellotti, Glass Matrix Composites from Solid Waste Materials, J. Europ. Ceram. Soc. 21, 453–460 (2001).

    Article  CAS  Google Scholar 

  106. E. Bernardo, G. Scarinci, S. Hreglich, Mechanical Properties of Metal-Particulate Lead-Silicate Glass Matrix Composites Obtained by Means of Powder Technology, J. Europ. Ceram. Soc. 23, 1819–1827 (2003).

    Article  CAS  Google Scholar 

  107. M. A. Audero, A. M. Bevilacqua, N. B. de Bernasconi, D. O. Russo and M. E. Sterba, Immobilization of Simulated High-Level Waste in Sintered Glasses, J. Nucl. Mat. 223, 151–156 (1995).

    Article  CAS  Google Scholar 

  108. A. R. Boccaccini, and K. Pfeiffer, Preparation and Characterisation of a Glass Matrix Composite Containing Aluminium Titanate Particles with Improved Thermal Shock Resistance, Glass Sci. Technol. Glastech. Ber. 72, 352–357 (1999).

    CAS  Google Scholar 

  109. A. R. Boccaccini, S. Atiq and R. W. Grimes, Hot-Pressed Glass Matrix Composites Containing Pyrochlore Phase Particles for Nuclear Waste Encapsulation, Adv. Eng. Mat. 5, 501–508 (2003).

    Article  CAS  Google Scholar 

  110. M. A. Harmer, H. Bergna, M. Saltzberg and Y. H. Hu, Preparation and Properties of Borosilicate-Coated Alumina Particles from Alkoxides, J. Am. Ceram. Soc. 79, 1546–1552 (1996).

    Article  CAS  Google Scholar 

  111. G. W. Scherer, Sintering of Low-Density Glasses. Part I. Theory, J. Am. Ceram. Soc. 60, 239–243 (1977).

    Article  CAS  Google Scholar 

  112. Y. Imanaka, S. Aoki, N. Kamehara and K. Niwa, Cristobalite Phase Formation in Glass/Ceramic Composites, J. Am. Ceram. Soc. 78, 1265–1271 (1995).

    Article  CAS  Google Scholar 

  113. M. N. Rahaman and L. C. De Jonghe, Effect of Rigid Inclusions on the Sintering of Glass Powder Compacts, J. Am. Ceram. Soc. 70 C-348–C-351 (1987).

    Article  CAS  Google Scholar 

  114. A. R. Boccaccini and E. A. Olevsky, Effect of Rigid Inclusions on Sintering Anisotropy of Composite Glass Powder Compacts, J. Mat. Proc. Technol. 96, 92–101 (1999).

    Article  Google Scholar 

  115. G. W. Scherer, Sintering with Rigid Inclusions, J. Am. Ceram. Soc. 70, 719–725 (1987).

    Article  CAS  Google Scholar 

  116. R. K. Bordia, G.W. Scherer, On Constrained Sintering, Parts I, II, III, Acta Metall. 36, 2393–2416 (1988).

    Article  CAS  Google Scholar 

  117. I. W. Donald and P. W. McMillan, Review: Ceramic Matrix Composites, J. Mat. Sci. 11, 949–972 (1976).

    Article  CAS  Google Scholar 

  118. M. Kinoshita, M. Satou and K. Uematsu, Dispersant Affects Glass-Based Multicomponent Slurries, Ceram. Bull. 76[10], 55–58 (1997).

    CAS  Google Scholar 

  119. E. J. Minay, V. Desbois, A. R. Boccaccini, Innovative Manufacturing Technique for Glass Matrix Composites: Extrusion of Recycled TV Set Screen Glass Reinforced with Al2O3 Platelets, J. Mat. Proc. Technol. 142, 471–478 (2003).

    Article  CAS  Google Scholar 

  120. V. Lansmann, M. Jansen, Application of the Glass-ceramic Process for the Fabrication of Whisker Reinforced Celsian-Composites, J. Mat. Sci. 36, 1531–1538 (2001).

    Article  CAS  Google Scholar 

  121. K. H. Lee, D. A. Hirschfeld and J. J. Brown, In Situ Reinforced Glass-Ceramic in the Lithia-Alumina-Silica System, Ceram. Trans. 30, 293–301 (1992).

    Google Scholar 

  122. L. Chen, C. Leonelli, T. Manfredini, C. Siligardi, Processing of Silicon Carbide Whisker-Reinforced Glass-Ceramic Composite by Microwave Heating, J. Am. Ceram. Soc. 80, 3245–3249 (1997).

    CAS  Google Scholar 

  123. A. R. Boccaccini, P. Veronesi, C. Leonelli, Microwave processing of glass matrix composites containing controlled isolated porosity, J. Europ. Ceram. Soc. 21, 1073–1080 (2001).

    Article  CAS  Google Scholar 

  124. E. J. Minay, A. R. Boccaccini, P. Veronesi, V. Cannillo, C. Leonelli, Processing of Novel Glass Matrix Composites by Microwave Heating, in: Proc. Int. Conf. On Advances in Materials and Processing Technologies, AMPT 2003, A. G. Olabi, S. J. Hashmi, eds., Dublin City University (2003) pp. 1277–1280.

    Google Scholar 

  125. L. L. Hench, Concepts of Ultrastructure Processing, in Ultrastructure Processing of Ceramics, Glasses and Composites, L. L. Hench D. R. Ulrich eds., J. Wiley & Sons, New York (1984), 3–5.

    Google Scholar 

  126. A. R. Boccaccini, R. D. Rawlings and I. Dlouhy, Reliability of Chevron-Notch Technique for Fracture Toughness Determination in Glass, Mat. Sci. Eng. A 347, 102–108 (2003).

    Article  Google Scholar 

  127. M. P. Borom, Dispersion-Strengthened Glass Matrices — Glass-Ceramics, A Case in Point, J. Am. Ceram. Soc. 60, 17–21 (1977).

    Article  CAS  Google Scholar 

  128. R. I. Todd, A. R. Boccaccini, R. Sinclair, R. B. Yallee and R. J. Young, Thermal Residual Stresses and Their Toughening Effect in Al2O3 Platelet Reinforced Glass, Acta Materialia 47 3233–3240 (1999).

    Article  CAS  Google Scholar 

  129. D. P. H. Hasselman and R. M. Fulrath, Proposed Fracture Theory of a Dispersion-Strengthened Glass Matrix, J. Am. Ceram. Soc. 49, 68–72 (1966).

    Article  CAS  Google Scholar 

  130. F. L. Matthews and R. D. Rawlings, Composite Materials: Engineering and Science, Chapman and Hall, London (1994).

    Google Scholar 

  131. A. G. Evans, The Role of Inclusions in the Fracture of Ceramic Materials, J. Mat. Sci. 9, 1145–1152 (1974).

    Article  CAS  Google Scholar 

  132. V. Laws, The Efficiency of Fibrous Reinforcement of Brittle Matrices, J. Phys. D: Appl. Phys. 4, 1737–1746 (1971).

    Article  Google Scholar 

  133. M. Taya, S. Hayashi, A. S. Kobayashi and H. S. Yoon, Toughening of a Particulate-Reinforced Ceramic Matrix Composite by Thermal Residual Stress, J. Am. Ceram. Soc. 73, 1382–1391 (1990).

    Article  CAS  Google Scholar 

  134. Faber, K. T. and Evans, A. G., Crack Deflection Processes — I. and II., Acta Metall. 31, 565–584 (1983).

    Article  Google Scholar 

  135. V. Cannillo, G. C. Pellacani, C. Leonelli, A. R. Boccaccini, Numerical Modelling of the Fracture Behaviour of a Glass Matrix Composite Reinforced with Alumina Platelets, Composites Part A 34, 43–51 (2003).

    Article  Google Scholar 

  136. A. R. Boccaccini, V. Winkler, Fracture Surface Roughness and Toughness of Al2O3-Platelet Reinforced Glass Matrix Composites, Composites Part A 33, 125–131 (2002).

    Article  Google Scholar 

  137. Y. Waku, M. Suzuki, Y. Oda and Y. Kohtoku, Improving the Fracture Toughness of MgO-Al2O3-SiO2 Glass/Molybdenum Composites by the Microdispersion of Flaky Molybdenum Particles, J. Mat. Sci. 32, 4549–4557 (1997).

    Article  CAS  Google Scholar 

  138. A. R. Boccaccini, Machinability and Brittleness of Glass-Ceramics, J. Materials Processing Technology 65, 302–304 (1997).

    Article  Google Scholar 

  139. D. S. Baik, K. S. No, J. S. Chun, Y. J. Yoon and H.Y. Cho,AComparative Evaluation Method of Machinability for Mica-Based Glass-Ceramics, J. Mat. Sci. 30, 1801–1806 (1995).

    Article  CAS  Google Scholar 

  140. N. Bobkova, S. Barentceva and S. Gailevich, Composites on Glass-Ceramic Basis, in Proc. 17. Int. Glass Congress (China) (1995), 338–342.

    Google Scholar 

  141. N. D. Nazarenko, A. I. Yuga, L. F. Kolesnichenko, M. S. Shevchuk and N. I. Vlasko, Frictional P roperties of Sitall-Metallic-Filler Composites, Poroshk. Metall. 7, 498–501 (1980).

    Google Scholar 

  142. F. P. Meyer, G. D. Quinn and J. C. Walck, Reinforcing Fused Silica with High Purity Fibres, Ceram. Eng. Sci. Proc. 6, 646–656 (1985).

    Article  CAS  Google Scholar 

  143. P. Saewong and R. D. Rawlings, Erosion of TiC Reinforced Silceram Glass-Ceramic Composites, in Proc. Materials Solutions 97 on Wear of Engineering Materials, Indianapolis, USA, J. A. Hawk ed., ASM International (1998) 133–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this chapter

Cite this chapter

Roether, J.A., Boccaccini, A.R. (2005). Dispersion-Reinforced Glass and Glass-Ceramic Matrix Composites. In: Bansal, N.P. (eds) Handbook of Ceramic Composites. Springer, Boston, MA . https://doi.org/10.1007/0-387-23986-3_20

Download citation

Publish with us

Policies and ethics