Skip to main content

Exploiting Natural Variation to Understand Gene Function in Pine

  • Chapter
Genome Exploitation
  • 935 Accesses

4. Summary

Plant and animal breeders have made tremendous progress using phenotypic selection and quantitative genetic theory. Genetically improved varieties have resulted without any knowledge of the specific genes affecting desirable phenotypes. Genomic technologies now make it possible to identify the loci affecting phenotypes and measure the relative effects of different alleles. Breeders will soon have the option to select directly on genotype. However, there will be considerable challenges in accurately estimating the effects of many different alleles on complex trait phenotypes. Because of their evolutionary history, life history and reproductive characteristics, pines provide an excellent model system to begin to establish relationships between genotype and phenotype. Knowledge gained from pines will not only be used in applied forest tree breeding but might also serve for basic discovery that can be transferred to other plant and animal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Brown, G.R., Bassoni, D.L., Gill, G.P., Fontana, J.R., Wheeler, N.C., Megraw, R.A., Davis, M.F., Sewell, M.M., Tuskan, G.A., and Neale, D.B., 2003, Identification of quantitative trait loci influencing wood property traits in lolloby pine (Pinus taeda L.) III. QTL verification and candidate gene mapping, Genetics (in press).

    Google Scholar 

  • Cardon, L.R., and Bell, J.I., 2001, Association study designs for complex diseases, Nat. Rev. Genet. 2:91–99.

    Article  PubMed  CAS  Google Scholar 

  • Ching, A. et al., 2002, SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines, BMC Genetics 3: 19–32.

    Article  PubMed  Google Scholar 

  • Frary, A., Nesbitt, T.C., Grandillo, S., van der Knaap, E., Cong, E., Liu, J.P., Meller, J., Elber, R., Alpert, K.B., and Tanksley, S.D., 2000, fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85–88.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Gill, G.P., Brown, G.R., and Neale, D.B., 2003, A sequence mutation in cinnamyl alcohol dehydrogenase gene associated with altered lignification in loblolly pine, Plant Biotech. J. (in press).

    Google Scholar 

  • Goff, S.A. et al., 2002, A draft sequence of the rice genome (Oryza sativa L. ssp. japonica), Science 296: 92–100.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Groover, A.T., Devey, M.E., Fiddler, T.A., Lee, J.M., Megraw, R.A., Mitchell-Olds, T., Sherman, B.K., Vujcic, S.L., Williams, C.G., and Neale, D.B, 1994, Identification of quantitative trait loci influencing wood specific gravity in loblolly pine, Genetics 138:1293–1300.

    PubMed  CAS  Google Scholar 

  • Kearsey, M.J., and Farquhar, A.G.L., 1998, QTL analysis in plants; where are we now?, Heredity 80: 137–142.

    Article  PubMed  Google Scholar 

  • Lander, E.S., and Schork, N.J., 1994, Genetic dissection of complex traits, Science 265: 2037–2048.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Muona, O., 1990, Population genetics in forest tree improvement, in: Plant Population Genetics, Breeding, and Genetic Resources, A.H.D. Brown, M.T. Clegg, A.L., Kahler, B.S. Weir, eds., Sinauer Associates Inc., Sunderland, pp. 282–298.

    Google Scholar 

  • Norborg, M., Borevitz, J.O., Bergelson, J., Berry, C.C., Chory, J., Hagenblad, J., Kreitman, M., Maloof, J.N., Noyes, T., Oefner, P.J., Stah, E.A., and Weigel, D. 2002, The extent of linkage disequilibrium in Arabidopsis thaliana, Nat. Genet. 30: 190–193.

    Article  CAS  Google Scholar 

  • Paterson, A.H., 1998, Molecular Dissection of Complex Traits, CRC Press, New York.

    Google Scholar 

  • Rafalski, A., 2002, Applications of single nucleotide polymorphisms in crop genetics, Curr. Opin. Plant Biol. 5: 94–100.

    Article  PubMed  CAS  Google Scholar 

  • Remington, D.L., Thornsberry, J.M., Matsuoka, Y., Wilson, L.M., Whitt, S.R., Doebley, J., Kresovich, S., Goodman, M.M., and Buckler IV, E.S., 2001, Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. Natl. Acad. Sci. 98: 11479–11484.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Risch, N.J., 2000, Searching for genetic determinants in the new millennium, Nature 405: 847–856.

    Article  PubMed  CAS  Google Scholar 

  • Sewell, M.M., Bassoni, D.L., Megraw, R.A., and Wheeler, N.C., 2000, Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties, Theor. Appl. Genet. 101:1273–1281.

    Article  CAS  Google Scholar 

  • Sewell, M.M., Davis, M.F., Tuskin, G.A., Wheeler, N.C., Elam, C.C., Bassoni, D. L., and Neale, D.B., 2002, Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.) II. Chemical wood properties, Theor. Appl. Genet. 104(2–3):214–222

    Article  PubMed  CAS  Google Scholar 

  • Tenaillon, M.I., Sawkins, M.C., Long, A.D., Gaut, R.L., Doebley, J.F., and Gaut, B.S., 2001, Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.), Proc. Natl. Acad. Sci. 98: 9161–9166.

    Article  PubMed  ADS  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative, 2000, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature 408:796–815.

    Article  ADS  Google Scholar 

  • Thornsberry, J.M., Goodman, M.M., Doebley, J., Kresovich, S., Nielsen, D., and Buckler IV, E.S., 2001, Dwarf8 polymorphisms associate with variation in flowering time, Nat. Genet. 28: 286–289.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., et al., 2002, A draft sequence of the rice genome (Oryza sativa L. ssp. Indica), Science 296: 79–92.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Zhu, Y.L., Song, Q.J., Hyten, D.L., Van Tassell, C.P., Matukumalli, L.K., Grimm, D. R., Hyatt, S.M., Fickus, E.W., Young, N.D., and Cregan, P.B., 2003, Single-nucleotide polymorphisms in soybean, Genetics 163: 1123–1134.

    PubMed  CAS  Google Scholar 

  • Zobel, B.J., and Talbert, J.T., 1984, Applied Forest Tree Improvement, John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Neale, D.B., Brown, G.R. (2005). Exploiting Natural Variation to Understand Gene Function in Pine. In: Gustafson, J.P., Shoemaker, R., Snape, J.W. (eds) Genome Exploitation. Springer, Boston, MA. https://doi.org/10.1007/0-387-24187-6_10

Download citation

Publish with us

Policies and ethics