Skip to main content

NMDA Receptors: From Protein-Protein Interactions to Transactivation

  • Chapter
Synaptic Plasticity and Transsynaptic Signaling

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  • Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW, Tymianski M (2002) Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 298: 846–850.

    PubMed  CAS  Google Scholar 

  • Alagarsamy S, Marino MJ, Rouse ST, Gereau RW, Heinemann SF, Conn PJ (1999a) Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nat Neurosci 2: 234–240.

    PubMed  CAS  Google Scholar 

  • Alagarsamy S, Rouse ST, Gereau RW, Heinemann SF, Smith Y, Conn PJ (1999b) Activation of N-methyl-D-aspartate receptors reverses desensitization of metabotropic glutamate receptor, mGluR5, in native and recombinant systems. Ann N Y Acad Sci 868: 526–530.

    PubMed  CAS  Google Scholar 

  • Albright TD, Jessell TM, Kandel ER, Posner MI (2000) Neural science: a century of progress and the mysteries that remain. Neuron 25Suppl: S1–55.

    PubMed  Google Scholar 

  • Ali DW, Salter MW (2001) NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol 11: 336–342.

    PubMed  CAS  Google Scholar 

  • Aniksztejn L, Bregestovski P, Ben-Ari Y (1991) Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. Eur J Pharmacol 205: 327–328.

    PubMed  CAS  Google Scholar 

  • Aniksztejn L, Otani S, Ben-Ari Y (1992) Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long term potentiation through protein kinase C. Eur J Neurosci 4: 500–505.

    PubMed  Google Scholar 

  • Aronica E, Dell’Albani P, Condorelli DF, Nicoletti F, Hack N, Balazs R (1993) Mechanisms underlying developmental changes in the expression of metabotropic glutamate receptors in cultured cerebellar granule cells: homologous desensitization and interactive effects involving N-methyl-D-aspartate receptors. Mol Pharmacol 44: 981–989.

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, III, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–414.

    PubMed  CAS  Google Scholar 

  • Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27: 370–377.

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Aniksztejn L, Bregestovski P (1992) Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends Neurosci 15: 333–339.

    PubMed  CAS  Google Scholar 

  • Bortolotto ZA, Collingridge GL (1999) Evidence that a novel metabotropic glutamate receptor mediates the induction of long-term potentiation at CA1 synapses in the hippocampus. Biochem Soc Trans 27: 170–174.

    PubMed  CAS  Google Scholar 

  • Bortolotto ZA, Fitzjohn SM, Collingridge GL (1999) Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr Opin Neurobiol 9: 299–304.

    PubMed  CAS  Google Scholar 

  • Carvalho AL, Kameyama K, Huganir RL (1999) Characterization of phosphorylation sites on the glutamate receptor 4 subunit of the AMPA receptors. J Neurosci 19: 4748–4754.

    PubMed  CAS  Google Scholar 

  • Chang BY, Harte RA, Cartwright CA (2002) RACK1: a novel substrate for the Src protein-tyrosine kinase. Oncogene 21: 7619–7629.

    PubMed  CAS  Google Scholar 

  • Chun J, Weiner JA, Fukushima N, Contos JJ, Zhang G, Kimura Y, Dubin A, Ishii I, Hecht JH, Akita C, Kaushal D (2000) Neurobiology of receptor-mediated lysophospholipid signaling. From the first lysophospholipid receptor to roles in nervous system function and development. Ann N Y Acad Sci 905: 110–117.

    PubMed  CAS  Google Scholar 

  • Clark BA, Cull-Candy SG (2002) Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse. J Neurosci 22: 4428–4436.

    PubMed  CAS  Google Scholar 

  • Clements JD, Lester RAJ, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258: 1498–1501.

    PubMed  CAS  Google Scholar 

  • Collingridge GL, Bliss TV (1995) Memories of NMDA receptors and LTP. Trends Neurosci 18: 54–56.

    PubMed  CAS  Google Scholar 

  • Colwell CS, Levine MS (1994) Metabotropic glutamate receptors modulate N-methyl-D-aspartate receptor function in neostriatal neurons. Neuroscience 61: 497–507.

    PubMed  CAS  Google Scholar 

  • Conn PJ (2003) Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann N Y Acad Sci 1003: 12–21.

    PubMed  CAS  Google Scholar 

  • Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37: 205–237.

    PubMed  CAS  Google Scholar 

  • Courtney MJ, Nicholls DG (1992) Interactions between phospholipase C-coupled and N-methyl-D-aspartate receptors in cultured cerebellar granule cells: Protein kinase C mediated inhibition of N-methyl-D-aspartate responses. J Neurochem 59: 983–992.

    PubMed  CAS  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219: 1184–1190.

    PubMed  CAS  Google Scholar 

  • Della RG, Maudsley S, Daaka Y, Lefkowitz RJ, Luttrell LM (1999) Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade. Role of focal adhesions and receptor tyrosine kinases. J Biol Chem 274: 13978–13984.

    Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51: 7–61.

    PubMed  CAS  Google Scholar 

  • Doherty AJ, Palmer MJ, Henley JM, Collingridge GL, Jane DE (1997) (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but no mGlul, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus [In Process Citation]. Neuropharmacology 36: 265–267.

    PubMed  CAS  Google Scholar 

  • Downes GB, Gautam N (1999) The G protein subunit gene families. Genomics 62: 544–552.

    PubMed  CAS  Google Scholar 

  • Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53: 1–24.

    PubMed  CAS  Google Scholar 

  • Fitzjohn SM, Irving AJ, Palmer MJ, Harvey J, Lodge D, Collingridge GL (1996) Activation of group I mGluRs potentiates NMDA responses in rat hippocampal slices. Neurosci Lett 203: 211–213.

    PubMed  CAS  Google Scholar 

  • Gallagher SM, Daly CA, Bear MF, Huber KM (2004) Extracellular signal-regulated protein kinase activation is required for metabotropic glutamate receptor-dependent long-term depression in hippocampal area CAI. J Neurosci 24: 4859–4864.

    PubMed  CAS  Google Scholar 

  • Garner CC, Nash J, Huganir RL (2000) PDZ domains in synapse assembly and signalling. Trends Cell Biol 10: 274–280.

    PubMed  CAS  Google Scholar 

  • Gasic GP, Hollmann M (1992) Molecular neurobiology of glutamate receptors. Annu Rev Physiol 54: 507–536.

    PubMed  CAS  Google Scholar 

  • Grishin AA, Gee CE, Gerber U, Benquet P (2004) Differential calcium-dependent modulation of NMDA currents in CA1 and CA3 hippocampal pyramidal cells. J Neurosci 24: 350–355.

    PubMed  CAS  Google Scholar 

  • Groc L, Heine M, Cognet L, Brickley K, Stephenson FA, Lounis B, Choquet D (2004) Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci 7: 695–696.

    PubMed  CAS  Google Scholar 

  • Grosshans DR, Browning MD (2001) Protein kinase C activation induces tyrosine phosphorylation of the NR2A and NR2B subunits of the NMDA receptor. J Neurochem 76: 737–744.

    PubMed  CAS  Google Scholar 

  • Grosshans DR, Clayton DA, Coultrap SJ, Browning MD (2002) LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci 5: 27–33.

    PubMed  CAS  Google Scholar 

  • Gudermann T, Grosse R, Schultz G (2000) Contribution of receptor/G protein signaling to cell growth and transformation. Naunyn Schmiedebergs Arch Pharmacol 361: 345–362.

    PubMed  CAS  Google Scholar 

  • Gustafsson B, Wigstrom H (1988) Physiological mechanisms underlying long-term potentiation. Trends Neurosci 11: 156–162.

    PubMed  CAS  Google Scholar 

  • Gutkind JS (1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273: 1839–1842.

    PubMed  CAS  Google Scholar 

  • Hall RA, Premont RT, Lefkowitz RJ (1999) Heptahelical receptor signaling: beyond the G protein paradigm. J Cell Biol 145: 927–932.

    PubMed  CAS  Google Scholar 

  • Hall RA, Soderling TR (1997) Differential surface expression and phosphorylation of the N-methyl-D-aspartate receptor subunits NR1 and NR2 in cultured hippocampal neurons. J Biol Chem 272: 4135–4140.

    PubMed  CAS  Google Scholar 

  • Hardingham GE, Bading H (2003) The yin and yang of NMDA receptor signalling. Trends Neurosci 26: 81–89.

    PubMed  CAS  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5: 405–414.

    PubMed  CAS  Google Scholar 

  • Harvey J, Balasubramaniam R, Collingridge GL (1993) Carbachol can potentiate N-methyl-D-aspartate responses in the rat hippocampus by a staurosporine and thapsigargin-insensitive mechanism. Neurosci Lett 162: 165–168.

    PubMed  CAS  Google Scholar 

  • Hawkins LM, Prybylowski K, Chang K, Moussan C, Stephenson FA, Wenthold RJ (2004) Export from the endoplasmic reticulum of assembled N-methyl-d-aspartic acid receptors is controlled by a motif in the c terminus of the NR2 subunit. J Biol Chem 279: 28903–28910.

    PubMed  CAS  Google Scholar 

  • Heldin CH, Ostman A, Ronnstrand L (1998) Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta 1378: F79–113.

    PubMed  CAS  Google Scholar 

  • Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2: 880–888.

    PubMed  CAS  Google Scholar 

  • Heuss C, Scanziani M, Gahwiler BH, Gerber U (1999) G-protein-independent signaling mediated by metabotropic glutamate receptors. Nat Neurosci 2: 1070–1077.

    PubMed  CAS  Google Scholar 

  • Huang Y, Lu W, Ali DW, Pelkey KA, Pitcher GM, Lu YM, Aoto H, Roder JC, Sasaki T, Salter MW, MacDonald JF (2001) CAKbeta/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 29: 485–496.

    PubMed  CAS  Google Scholar 

  • Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000) Proteomic analysis of NMDA receptoradhesion protein signaling complexes [In Process Citation]. Nat Neurosci 3: 661–669.

    PubMed  CAS  Google Scholar 

  • Isaac JT, Nicoll RA, Malenka RC (1999) Silent glutamatergic synapses in the mammalian brain. Can J Physiol Pharmacol 77: 735–737.

    PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148: 1301–1308.

    PubMed  CAS  Google Scholar 

  • Jia Z, Lu Y, Henderson J, Taverna F, Romano C, Abramow-Newerly W, Wojtowicz JM, Roder J (1998) Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR5 [In Process Citation]. Learn Mem 5: 331–343.

    PubMed  CAS  Google Scholar 

  • Kelso SR, Nelson TE, Leonard JP (1992) Protein kinase C-mediated enhancement of NMDA currents by metabotropic glutamate receptors in Xenopus oocytes. J Physiol (Lond) 449:705–18: 705–718.

    PubMed  CAS  Google Scholar 

  • Kotecha SA, Jackson MF, Al Mahrouki A, Roder JC, Orser BA, MacDonald JF (2003) Co-stimulation of mGluR5 and N-Methyl-D-aspartate Receptors Is Required for Potentiation of Excitatory Synaptic Transmission in Hippocampal Neurons. J Biol Chem 278: 27742–27749.

    PubMed  CAS  Google Scholar 

  • Kotecha SA, MacDonald JF (2003) Signaling molecules and receptor transduction cascades that regulate NMDA receptor-mediated synaptic transmission. Int Rev Neurobiol 54: 51–106.

    PubMed  CAS  Google Scholar 

  • Kotecha SA, Oak JN, Jackson MF, Perez Y, Orser BA, Van Tol HHM, MacDonald JF (2002) A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 35: 1111–1122.

    PubMed  CAS  Google Scholar 

  • Kovalchuk Y, Eilers J, Lisman J, Konnerth A (2000) NMDA receptor-mediated subthreshold Ca(2+) signals in spines of hippocampal neurons. J Neurosci 20: 1791–1799.

    PubMed  CAS  Google Scholar 

  • Kullmann DM (2003) Silent synapses: what are they telling us about long-term potentiation? Philos Trans R Soc Lond B Biol Sci 358: 727–733.

    PubMed  CAS  Google Scholar 

  • Kullmann DM, Min MY, Asztely F, Rusakov DA (1999) Extracellular glutamate diffusion determines the occupancy of glutamate receptors at CA1 synapses in the hippocampus. Philos Trans R Soc Lond B Biol Sci 354: 395–402.

    PubMed  CAS  Google Scholar 

  • Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111: 219–230.

    PubMed  CAS  Google Scholar 

  • Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A 98: 3555–3560.

    PubMed  CAS  Google Scholar 

  • Lei S, Lu WY, Xiong ZG, Orser BA, Valenzuela CF, MacDonald JF (1999) Platelet-derived growth factor receptor-induced feed-forward inhibition of excitatory transmission between hippocampal pyramidal neurons. J Biol Chem 274: 30617–30623.

    PubMed  CAS  Google Scholar 

  • Levey AI (1996) Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc Natl Acad Sci U S A 93: 13541–13546.

    PubMed  CAS  Google Scholar 

  • Levey AI, Edmunds SM, Hersch SM, Wiley RG, Heilman CJ (1995) Light and electron microscopic study of m2 muscarinic acetylcholine receptor in the basal forebrain of the rat. J Comp Neurol 351: 339–356.

    PubMed  CAS  Google Scholar 

  • Li B, Chen N, Luo T, Otsu Y, Murphy TH, Raymond LA (2002) Differential regulation of synaptic and extrasynaptic NMDA receptors. Nat Neurosci 5: 833–834.

    PubMed  CAS  Google Scholar 

  • Li Z, Sheng M (2003) Some assembly required: the development of neuronal synapses. Nat Rev Mol Cell Biol 4: 833–841.

    PubMed  CAS  Google Scholar 

  • Liu F, Wan Q, Pristupa ZB, Yu XM, Wang YT, Niznik HB (2000) Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors. Nature 403: 274–280.

    PubMed  CAS  Google Scholar 

  • Liu GJ, Madsen BW (1997) PACAP38 Modulates Activity of NMDA Receptors in Cultured Chick Cortical Neurons. J Neurophysiol 78: 2231–2234.

    PubMed  CAS  Google Scholar 

  • Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304: 1021–1024.

    PubMed  CAS  Google Scholar 

  • Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT (2001) Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29: 243–254.

    PubMed  CAS  Google Scholar 

  • Lu WY, Xiong ZG, Iei S, Orser BA, Dudek E, Browning MD, MacDonald JF (1999) G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat Neurosci 2: 331–338.

    PubMed  CAS  Google Scholar 

  • Lu YM, Roder JC, Davidow J, Salter MW (1998) Src Activation in the Induction of Long-Term Potentiation in CA1 Hippocampal Neurons. Science 279: 1363–1367.

    PubMed  CAS  Google Scholar 

  • Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8: 1488–1500.

    PubMed  CAS  Google Scholar 

  • Luscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3: 545–550.

    PubMed  CAS  Google Scholar 

  • Luttrell LM, Daaka Y, Lefkowitz RJ (1999) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11: 177–183.

    PubMed  CAS  Google Scholar 

  • Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84: 87–136.

    PubMed  CAS  Google Scholar 

  • Ma YC, Huang J, Ali S, Lowry W, Huang XY (2000) Src tyrosine kinase is a novel direct effector of G proteins. Cell 102: 635–646.

    PubMed  CAS  Google Scholar 

  • Ma YC, Huang XY (2002) Novel regulation and function of Src tyrosine kinase. Cell Mol Life Sci 59: 456–462.

    PubMed  CAS  Google Scholar 

  • MacDonald JF, Kotecha SA, Lu WY, Jackson MF (2001) Convergence of PKC-dependent kinase signal cascades on NMDA receptors. Curr Drug Targets 2: 299–312.

    PubMed  CAS  Google Scholar 

  • Malenka RC (2003) Synaptic plasticity and AMPA receptor trafficking. Ann N Y Acad Sci 1003: 1–11.

    PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285: 1870–1874.

    PubMed  CAS  Google Scholar 

  • Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ (1998) Activation of the genetically defined ml muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells [In Process Citation]. Proc Natl Acad Sci U S A 95: 11465–11470.

    PubMed  CAS  Google Scholar 

  • Markram H, Segal M (1992) Activation of protein kinase C suppresses responses to NMDA in rat CA1 hippocampal neurones. J Physiol (Lond) 457:491–501: 491–501.

    PubMed  CAS  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429: 761–766.

    PubMed  CAS  Google Scholar 

  • Minakami R, Katsuki F, Sugiyama H (1993) A variant of metabotropic glutamate receptor subtype 5: an evolutionally conserved insertion with no termination codon. Biochem Biophys Res Commun 194: 622–627.

    PubMed  CAS  Google Scholar 

  • Nicoll RA, Malenka RC (1999) Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N Y Acad Sci 868:515–25: 515–525.

    PubMed  CAS  Google Scholar 

  • Ning K, Pei L, Liao M, Liu B, Zhang Y, Jiang W, Mielke JG, Li L, Chen Y, El Hayek YH, Fehlings MG, Zhang X, Liu F, Eubanks J, Wan Q (2004) Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN. J Neurosci 24: 4052–4060.

    PubMed  CAS  Google Scholar 

  • Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, Salter MW (2003) Glycine binding primes NMDA receptor internalization. Nature 422: 302–307.

    PubMed  CAS  Google Scholar 

  • Nong Y, Huang YQ, Salter MW (2004) NMDA receptors are movin’ in. Current Opinion in Neurobiology 14: 353–361.

    PubMed  CAS  Google Scholar 

  • Oak, J. N., Lavine, N., and Van Tol, H. H. Dopamine D4 and D2L receptor stimulation of the mitogen-activated protein kinase pathway is dependent on transactivation of the PDGF receptor. Molecular Pharmacology. 2001.

    Google Scholar 

  • Otmakhova NA, Lisman JE (1998) Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. J Neurosci 19: 1437–1445.

    Google Scholar 

  • Parfitt KD, Doze VA, Madison DV, Browning MD (1992) Isoproterenol increases the phosphorylation of the synapsins and increases synaptic transmission in dentate gyrus, but not in area CA1, of the hippocampus. Hippocampus 2: 59–64.

    PubMed  CAS  Google Scholar 

  • Perez-Otano I, Ehlers MD (2004) Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses. Neurosignals 13: 175–189.

    PubMed  CAS  Google Scholar 

  • Prybylowski K, Wenthold RJ (2004) N-Methyl-D-aspartate receptors: subunit assembly and trafficking to the synapse. J Biol Chem 279: 9673–9676.

    PubMed  CAS  Google Scholar 

  • Rahman S, Neuman RS (1996) Characterization of metabotropic glutamate receptor-mediated facilitation of N-methyl-D-aspartate depolarization of neocortical neurones. Br J Pharmacol 117: 675–683.

    PubMed  CAS  Google Scholar 

  • Rajagopal R, Chen ZY, Lee FS, Chao MV (2004) Transactivation of Trk neurotrophin receptors by g-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 24: 6650–6658.

    PubMed  CAS  Google Scholar 

  • Roberto M, Scuri R, Brunelli M (2001) Differential effects of PACAP-38 on synaptic responses in rat hippocampal CA1 region. Learn Mem 8: 265–271.

    PubMed  CAS  Google Scholar 

  • Romano C, Sesma MA, McDonald CT, O’Malley K, Van den Pol AN, Olney JW (1995) Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J Comp Neurol 355: 455–469.

    PubMed  CAS  Google Scholar 

  • Rouse ST, Gilmor ML, Levey AI (1998) Differential presynaptic and postsynaptic expression of m1–m4 muscarinic acetylcholine receptors at the perforant pathway/granule cell synapse. Neuroscience 86: 221–232.

    PubMed  CAS  Google Scholar 

  • Rusakov DA, Kullmann DM (1998) Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J Neurosci 18: 3158–3170.

    PubMed  CAS  Google Scholar 

  • Salter MW, De Koninck Y (1999) An ambiguous fast synapse: a new twist in the tale of two transmitters. Nat Neurosci 2: 199–200.

    PubMed  CAS  Google Scholar 

  • Salter MW, Kalia LV (2004) SRC kinases: A hub for NMDA receptor regulation. Nature Reviews Neuroscience 5: 317–328.

    PubMed  CAS  Google Scholar 

  • Scannevin RH, Huganir RL (2000) Postsynaptic organization and regulation of excitatory synapses. Nat Rev Neurosci 1: 133–141.

    PubMed  CAS  Google Scholar 

  • Seeburg PH (1993) The TiPS/TINS lecture: the molecular biology of mammalian glutamate receptor channels. Trends Pharmacol Sci 14: 297–303.

    PubMed  CAS  Google Scholar 

  • Shah BH, Catt KJ (2004) GPCR-mediated transactivation of RTKs in the CNS: mechanisms and consequences. Trends Neurosci 27: 48–53.

    PubMed  CAS  Google Scholar 

  • Sheng M (2001) Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci U S A 98: 7058–7061.

    PubMed  CAS  Google Scholar 

  • Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science 298: 776–780.

    PubMed  CAS  Google Scholar 

  • Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N (1993) Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci Lett 163: 53–57.

    PubMed  CAS  Google Scholar 

  • Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 2000 Feb 23(2):75–80 23: 75–80.

    CAS  Google Scholar 

  • Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365: 170–175.

    PubMed  CAS  Google Scholar 

  • Sweatt JD (1999) Toward a molecular explanation for long-term potentiation. Learn Mem 6: 399–416.

    PubMed  CAS  Google Scholar 

  • Swope SL, Moss SI, Raymond LA, Huganir RL (1999) Regulation of ligand-gated ion channels by protein phosphorylation. Adv Second Messenger Phosphoprotein Res 33:49–78: 49–78.

    PubMed  CAS  Google Scholar 

  • Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5: 173–183.

    PubMed  CAS  Google Scholar 

  • Tovar KR, Westbrook GL (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19: 4180–4188.

    PubMed  CAS  Google Scholar 

  • Valenti O, Conn PJ, Marino MJ (2002) Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors Co-expressed in the same neuronal populations. J Cell Physiol 191: 125–137.

    PubMed  CAS  Google Scholar 

  • Valenzuela CF, Xiong Z, MacDonald JF, Weiner JL, Frazier CJ, Dunwiddie TV, Kazlauskas A, Whiting PJ, Harris RA (1996) Platelet-derived growth factor induces a long-term inhibition of N-methyl-D-aspartate receptor function. J Biol Chem 271: 16151–16159.

    PubMed  CAS  Google Scholar 

  • van Zundert B, Yoshii A, Constantine-Paton M (2004) Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci 27: 428–437.

    PubMed  Google Scholar 

  • Vanhoutte P, Bading H (2003) Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol 13: 366–371.

    PubMed  CAS  Google Scholar 

  • Vissel B, Krupp JJ, Heinemann SF, Westbrook GL (2001) A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat Neurosci 4: 587–596.

    PubMed  CAS  Google Scholar 

  • Voronin LL, Cherubini E (2003) “Presynaptic silence” may be golden. Neuropharmacology 45: 439–449.

    PubMed  CAS  Google Scholar 

  • Wang LY, Dudek EM, Browning MD, MacDonald JF (1994) Modulation of AMPA/kainate receptors in cultured murine hippocampal neurones by protein kinase C. J Physiol (Lond) 475: 431–437.

    PubMed  CAS  Google Scholar 

  • Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS (2003) Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 43: 335–358.

    PubMed  CAS  Google Scholar 

  • Wong AH, Van Tol HH (2003a) Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev 27: 269–306.

    PubMed  Google Scholar 

  • Wong AH, Van Tol HH (2003b) The dopamine D4 receptors and mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27: 1091–1099.

    PubMed  CAS  Google Scholar 

  • Yaka R, He DY, Phamluong K, Ron D (2003) Pituitary adenylate cyclase-activating polypeptide (PACAP(1–38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACKI. J Biol Chem 278: 9630–9638.

    PubMed  CAS  Google Scholar 

  • Yaka R, Thornton C, Vagts AJ, Phamluong K, Bonci A, Ron D (2002) NMDA receptor function is regulated by the inhibitory scaffolding protein, RACKI. Proc Natl Acad Sci U S A 99: 5710–5715.

    PubMed  CAS  Google Scholar 

  • Zhou Q, Poo MM (2004) Reversal and consolidation of activity-induced synaptic modifications. Trends Neurosci 27: 378–383.

    PubMed  CAS  Google Scholar 

  • Zukin SR, Javitt DC (1993) Phencyclidine receptor binding as a probe of NMDA receptor functioning: implications for drug abuse research. NIDA Res Monogr 133:1–12: 1–12.

    PubMed  CAS  Google Scholar 

  • Zylberman I, Javitt DC, Zukin SR (1995) Pharmacological augmentation of NMDA receptor function for treatment of schizophrenia. Ann N Y Acad Sci 757:487–91: 487–491.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

MacDonald, J.F., Kotecha, S.A., Lu, WY., Jackson, M.F. (2005). NMDA Receptors: From Protein-Protein Interactions to Transactivation. In: Stanton, P.K., Bramham, C., Scharfman, H.E. (eds) Synaptic Plasticity and Transsynaptic Signaling. Springer, Boston, MA. https://doi.org/10.1007/0-387-25443-9_19

Download citation

Publish with us

Policies and ethics