Skip to main content

Treatment of Mitochondrial-Based Cardiac Diseases. Targeting the Organelle

  • Chapter
Mitochondria and the Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 256))

  • 897 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DiMauro S, Mancuso M, Naini A (2004) Mitochondrial encephalomyopathies: Therapeutic approach. Ann N Y Acad Sci 1011:232–45

    PubMed  CAS  Google Scholar 

  2. Pollitt RJ (1995) Disorders of mitochondrial long-chain fatty acid oxidation. J Inherit Metab Dis 18:473–90

    PubMed  CAS  Google Scholar 

  3. Pierpont ME, Breningstall GN, Stanley CA, Singh A (2000) Familial carnitine transporter defect: A treatable cause of cardiomyopathy in children. Am Heart J 139:S96–106

    PubMed  CAS  Google Scholar 

  4. Freisinger P, Horvath R, Macmillan C, Peters J, Jaksch M (2004) Reversion of hypertrophic cardiomyopathy in a patient with deficiency of the mitochondrial copper binding protein SCO2: Is there a potential effect of copper? J Inherit Metab Dis 27:67–79

    PubMed  CAS  Google Scholar 

  5. Shoffner JM, Wallace DC (1994) Oxidative phosphorylation diseases and mitochondrial DNA mutations: Diagnosis and treatment. Annu Rev Nutr 14:535–68

    PubMed  CAS  Google Scholar 

  6. Bersin RM, Stacpoole PW (1997) Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am Heart J 134:841–55

    PubMed  CAS  Google Scholar 

  7. Fragasso G, Palloshi A, Bassanelli G, Steggerda R, Montano C, Margonato A (2004) Heart disease and diabetes: From pathophysiology to therapeutic options. Ital Heart J 5:4S–15S

    PubMed  Google Scholar 

  8. Taivassalo T, Matthews PM, De Stefano N, Sripathi N, Genge A, Karpati G, Arnold DL (1996) Combined aerobic training and dichloroacetate improve exercise capacity and indices of aerobic metabolism in muscle cytochrome oxidase deficiency. Neurology 47:529–34

    PubMed  CAS  Google Scholar 

  9. Ferrari R, Ceconi C, Curello S, Cargnoni A, Alfieri O, Pardini A, Marzollo P, Visioli O (1991) Oxygen free radicals and myocardial damage: Protective role of thiol-containing agents. Am J Med 1991:95S–105S

    Google Scholar 

  10. Ferrari R, Guardigli G, Mele D, Percoco GF, Ceconi C, Curello S (2004) Oxidative stress during myocardial ischaemia and heart failure. Curr Pharm Des 10:1699–711

    PubMed  CAS  Google Scholar 

  11. Cooper JM, Schapira AH (2003) Friedreich’s Ataxia: Disease mehanisms, antioxidant and Coenzyme Q10 therapy. Biofactors 18:163–71

    PubMed  CAS  Google Scholar 

  12. Santos DL, Moreno AJ, Leino RL, Froberg MK, Wallace KB (2002) Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol Appl Pharmacol 185:218–27

    PubMed  CAS  Google Scholar 

  13. Lerman-Sagie T, Rustin P, Lev D, Yanoov M, Leshinsky-Silver E, Sagie A, Ben-Gal T, Munnich A (2001) Dramatic improvement in mitochondrial cardiomyopathy following treatment with idebenone. J Inherit Metab Dis 24:28–34

    PubMed  CAS  Google Scholar 

  14. Sayed-Ahmed M, Salman T, Gaballah H, Abou El-Naga SA, Nicolai R, Calvani M (2001) Propionyl-L-carnitine as protector against adriamycin-induced cardiomyopathy. Pharmacol Res 43:513–20

    PubMed  CAS  Google Scholar 

  15. Shite J, Qin F, Mao W, Kawai H, Stevens SY, Liang C (2001) Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy. J Am Coll Cardiol 38:1734–40

    PubMed  CAS  Google Scholar 

  16. Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, Colan SD, Asselin BL, Barr RD, Clavell LA, Hurwitz CA, Moghrabi A, Samson Y, Schorin M, Gelber R, Sallan SE (2004) The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 351:145–53

    PubMed  CAS  Google Scholar 

  17. Geromel V, Darin N, Chretien D, Benit P, DeLonlay P, Rotig A, Munnich A, Rustin P (2002) Coenzyme Q(10) and idebenone in the therapy of respiratory chain diseases: Rationale and comparative benefits. Mol Genet Metab 77:21–30

    PubMed  CAS  Google Scholar 

  18. Hausse AO, Aggoun Y, Bonnet D, Sidi D, Munnich A, Rotig A, Rustin P (2002) Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart 87:346–9

    PubMed  CAS  Google Scholar 

  19. Rustin P, Munnich A, Rotig A (1999) Quinone analogs prevent enzymes targeted in Friedreich ataxia from iron-induced injury in vitro. Biofactors 9:247–51

    PubMed  CAS  Google Scholar 

  20. Ogasahara S, Yorifuji S, Nishikawa Y, Takahashi M, Wada K, Hazama T, Nakamura Y, Hashimoto S, Kono N, Tarui S (1985) Improvement of abnormal pyruvate metabolism and cardiac conduction defect with coenzyme Q10 in Kearns-Sayre syndrome. Neurology 35:372–7

    PubMed  CAS  Google Scholar 

  21. Mortensen SA, Vadhanavikit S, Baandrup U, Folkers K (1985) Long-term coenzyme Q10 therapy: A major advance in the management of resistant myocardial failure. Drugs Exp Clin Res 11:581–93

    PubMed  CAS  Google Scholar 

  22. Hargreaves IP (2003) Ubiquinone: Cholesterol’s reclusive cousin. Ann Clin Biochem 40:207–18

    PubMed  CAS  Google Scholar 

  23. Mortensen SA (2003) Overview on coenzyme Q10 as adjunctive therapy in chronic heart failure: Rationale, design and end-points of "Q-symbio"—multinational trial. Biofactors 18:79–89

    PubMed  CAS  Google Scholar 

  24. Saudubray JM, Martin D, de Lonlay P, Touati G, Poggi-Travert F, Bonnet D, Jouvet P, Boutron M, Slama A, Vianey-Saban C, Bonnefont JP, Rabier D, Kamoun P, Brivet M (1999) Recognition and management of fatty acid oxidation defects: A series of 107 patients. J Inherit Metab Dis 22:488–502

    PubMed  CAS  Google Scholar 

  25. Brown-Harrison MC, Nada MA, Sprecher H, Vianey-Saban C, Farquhar J Jr, Gilladoga AC, Roe CR (1996) Very long-chain acyl-CoA dehydrogenase deficiency: Successful treatment of acute cardiomyopathy. Biochem Mol Med 58:59–65

    PubMed  CAS  Google Scholar 

  26. Wallhaus TR, Taylor M, DeGrado TR, Russell DC, Stanko P, Nickles RJ, Stone CK (2001) Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 103:2441–6

    PubMed  CAS  Google Scholar 

  27. Rupp H, Zarain-Herzberg A, Maisch B (2002) The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Herz 27:621–36

    PubMed  Google Scholar 

  28. Stanley WC (2002) Partial fatty acid oxidation inhibitors for stable angina. Expert Opin Investig Drugs 11:615–29

    PubMed  CAS  Google Scholar 

  29. Zarain-Herzberg A, Rupp H (1999) Transcriptional modulators targeted at fuel metabolism of hypertrophied heart. Am J Cardiol 83:31H–37H

    PubMed  CAS  Google Scholar 

  30. Schmidt-Schweda S, Holubarsch C (2000) First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci 99:27–35

    Article  PubMed  CAS  Google Scholar 

  31. Pepine CJ, Wolff AA (1999) A controlled trial with a novel anti-ischemic agent, ranolazine, in chronic stable angina pectoris that is responsive to conventional antianginal agents. Am J Cardiol 84:46–50

    PubMed  CAS  Google Scholar 

  32. Fragasso G, Piatti Md PM, Monti L, Palloshi A, Setola E, Pucceti P, Calori G, Lopaschuk GD, Margonato A (2003) Short-and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am Heart J 146:E18

    PubMed  CAS  Google Scholar 

  33. Kantor PF, Lucien A, Kozak R, Lopaschuk GD (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86:580–8

    PubMed  CAS  Google Scholar 

  34. MacInnes A, Fairman DA, Binding P, Rhodes J, Wyatt MJ, Phelan A, Haddock PS, Karran EH (2003) The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 93:e26–32

    PubMed  CAS  Google Scholar 

  35. Tabbi-Anneni I, Helies-Toussaint C, Morin D, Bescond-Jacquet A, Lucien A, Grynberg A (2003) Prevention of heart failure in rats by trimetazidine treatment: A consequence of accelerated phospholipid turnover? J Pharmacol Exp Ther 304:1003–9

    PubMed  CAS  Google Scholar 

  36. Chung MK (2004) Vitamins, Supplements, herbal medicines, and arrhythmias. Cardiol Rev 12:73–84

    PubMed  Google Scholar 

  37. Tavazzi L, Tognoni G, Franzosi MG, Latini R, Maggioni AP, Marchioli R, Nicolosi GL, Porcu M (2004) Rationale and design of the GISSI heart failure trial: A large trial to assess the effects of n-3 polyunsaturated fatty acids and rosuvastatin in symptomatic congestive heart failure. Eur J Heart Fail 6:635–41

    PubMed  CAS  Google Scholar 

  38. Singer P, Wirth M (2004) Can n-3 PUFA reduce cardiac arrhythmias? Results of a clinical trial. Prostaglandins Leukot Essent Fatty Acids 71:153–9

    PubMed  CAS  Google Scholar 

  39. Pepe S, Tsuchiya N, Lakatta EG, Hansford RG (1999) PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH. Am J Physiol 276:H149–58

    PubMed  CAS  Google Scholar 

  40. Xu Z, Jiao Z, Cohen MV, Downey JM (2002) Protection from AMP 579 can be added to that from either cariporide or ischemic preconditioning in ischemic rabbit heart. J Cardiovasc Pharmacol 40:510–8

    PubMed  CAS  Google Scholar 

  41. Inagaki K, Chen L, Ikeno F, Lee F, Imahashi K, Bouley D, Rezaee M, Yock P, Murphy E, Mochly-Rosen D (2003) Inhibition of protein kinase C protects against reperfusion injury of the ischemic heart. Circulation 108:2304–7

    PubMed  CAS  Google Scholar 

  42. Inoue K, Ando S, Itagaki T, Shiojiri Y, Kashima T, Takaba T (2003) Intracellular calcium increasing at the beginning of reperfusion assists the early recovery of myocardial contractility after diltiazem cardioplegia. Jpn J Thorac Cardiovasc Surg 51:98–103

    PubMed  Google Scholar 

  43. Kroner A, Seitelberger R, Schirnhofer J, Bernecker O, Mallinger R, Hallstrom S, Ploner M, Podesser BK (2002) Diltiazem during reperfusion preserves high energy phosphates by protection of mitochondrial integrity. Eur J Cardiothorac Surg 21:224–31

    PubMed  CAS  Google Scholar 

  44. Bertolet BD (1999) Calcium antagonists in the post-myocardial infarction setting. Drugs Aging 15:461–70

    PubMed  CAS  Google Scholar 

  45. Theroux P, Gregoire J, Chin C, Pelletier G, de Guise P, Juneau M (1998) Intravenous diltiazem in acute myocardial infarction. Diltiazem as adjunctive therapy to activase (DATA) trial. J Am Coll Cardiol 32:620–8.

    PubMed  CAS  Google Scholar 

  46. Pizzetti G, Mailhac A, Li Volsi L, Di Marco F, Lu C, Margonato A, Chierchia SL. (2001) Beneficial effects of diltiazem during myocardial reperfusion: A randomized trial in acute myocardial infarction. Ital Heart J 2:757–65

    PubMed  CAS  Google Scholar 

  47. Matlib MA, McFarland KL (1991) Diltiazem inhibition of sodium-induced calcium release. Am J Hypertens 4:435S–41S

    PubMed  CAS  Google Scholar 

  48. Malhotra R, Mishra M, Kler TS, Kohli VM, Mehta Y, Trehan N (1997) Cardioprotective effects of diltiazem infusion in the perioperative period. Eur J Cardiothorac Surg 12:420–7

    PubMed  CAS  Google Scholar 

  49. Leesar MA, Stoddard MF, Xuan YT, Tang XL, Bolli R (2003) Nonelectrocardiographic evidence that both ischemic preconditioning and adenosine preconditioning exist in humans. J Am Coll Cardiol 42:437–45

    PubMed  CAS  Google Scholar 

  50. Crisafulli A, Melis F, Tocco F, Santoboni UM, Lai C, Angioy G, Lorrai L, Pittau G, Concu A, Pagliaro P (2004) Exercise-induced and nitroglycerin-induced myocardial preconditioning improves hemodynamics in patients with angina. Am J Physiol Heart Circ Physiol 287:H235–42

    PubMed  CAS  Google Scholar 

  51. Argaud L, Ovize M (2004) How to use the paradigm of ischemic preconditioning to protect the heart? Med Sci 20:521–5

    Google Scholar 

  52. de Ruijter W, Musters RJ, Boer C, Stienen GJ, Simonides WS, de Lange JJ (2003)The cardioprotective effect of sevoflurane depends on protein kinase C activation, opening of mitochondrial K(+)(ATP) channels, and the production of reactive oxygen species. Anesth Anal 97:1370–6

    Google Scholar 

  53. Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Schaub MC (2002) Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial K(ATP) channels via multiple signaling pathways. Anesthesiology 97:4–14

    PubMed  CAS  Google Scholar 

  54. Stowe DF, Kevin LG (2004) Cardiac preconditioning by volatile anesthetic agents: A defining role for altered mitochondrial bioenergetics. Antioxid Redox Signal 6:439–48

    PubMed  CAS  Google Scholar 

  55. Julier K, da Silva R, Garcia C, Bestmann L, Frascarolo P, Zollinger A, Chassot PG, Schmid ER, Turina MI, von Segesser LK, Pasch T, Spahn DR, Zaugg M (2003) Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: A double-blinded, placebo-controlled, multicenter study. Anesthesiology 98:1315–27

    PubMed  CAS  Google Scholar 

  56. Dziegiel P, Podhorska-Okolow M, Surowiak P, Ciesielska U, Rabczynski J, Zabel M (2003) Influence of exogenous melatonin on doxorubicin-evoked effects in myocardium and in transplantable Morris hepatoma in rats. In Vivo 17:325–8

    PubMed  CAS  Google Scholar 

  57. Tanaka M, Nakae S, Terry RD, Mokhtari GK, Gunawan F, Balsam LB, Kaneda H, Kofidis T, Tsao PS, Robbins RC (2004) Cardiomyocyte-specific Bcl-2 overexpression attenuates ischemia-reperfusion injury, immune response during acute rejection, and graft coronary artery disease. Blood 104:3789–96

    PubMed  CAS  Google Scholar 

  58. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion: A target for cardioprotection. Cardiovasc Res 61:372–85

    PubMed  CAS  Google Scholar 

  59. Minners J, van den Bos EJ, Yellon DM, Schwalb H, Opie LH, Sack MN (2000) Dinitrophenol, cyclosporin A, and trimetazidine modulate preconditioning in the isolated rat heart: Support for a mitochondrial role in cardioprotection. Cardiovasc Res 47:68–73

    PubMed  CAS  Google Scholar 

  60. Ganote CE, Armstrong SC (2003) Effects of CCCP-induced mitochondrial uncoupling and cyclosporin A on cell volume, cell injury and preconditioning protection of isolated rabbit cardiomyocytes. J Mol Cell Cardiol 35:749–59

    PubMed  CAS  Google Scholar 

  61. Teshima Y, Akao M, Jones SP, Marban E (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93:192–200

    PubMed  CAS  Google Scholar 

  62. Holmuhamedov EL, Jahangir A, Oberlin A, Komarov A, Colombini M, Terzic A (2004) Potassium Channel openers are uncoupling protonophores: Implication in cardioprotection. FEBS Lett 568:167–70

    PubMed  CAS  Google Scholar 

  63. Fischer UM, Tossios P, Huebner A, Geissler HJ, Bloch W, Mehlhorn U (2004) Myocardial apoptosis prevention by radical scavenging in patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 128:103–8

    PubMed  CAS  Google Scholar 

  64. Bagchi D, Sen CK, Ray SD, Das DK, Bagchi M, Preuss HG, Vinson JA (2003) Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res 523–524:87–97

    PubMed  Google Scholar 

  65. Brookes PS, Digerness SB, Parks DA, Darley-Usmar V (2002) Mitochondrial function in response to cardiac ischemia-reperfusion after oral treatment with quercetin. Free Radic Biol Med 32:1220–8

    PubMed  CAS  Google Scholar 

  66. Sato M, Maulik N, Das D (2002) Cardioprotection with alcohol: role of both alcohol and polyphenolic antioxidants. Ann N Y Acad Sci 957:122–35

    Article  PubMed  CAS  Google Scholar 

  67. Olivencia-Yurvati AH, Blair JL, Baig M, Mallet RT (2003) Pyruvate-enhanced cardioprotection during surgery with cardiopulmonary bypass. J Cardiothorac Vase Anesth 17:715–20

    Article  Google Scholar 

  68. Flood A, Hack BD, Headrick JP (2003) Pyruvate-dependent preconditioning and cardioprotection in murine myocardium. Clin Exp Pharmacol Physiol 30:145–52

    PubMed  CAS  Google Scholar 

  69. Suzuki YJ (2003) Growth factor signaling for cardioprotection against oxidative stress-induced apoptosis. Antioxid Redox Signal 5:741–9

    PubMed  CAS  Google Scholar 

  70. Chao W, Matsui T, Novikov MS, Tao J, Li L, Liu H, Ahn Y, Rosenzweig A (2003) Strategic advantages of insulin-like growth factor-I expression for cardioprotection. J Gene Med 5:277–86

    PubMed  CAS  Google Scholar 

  71. Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH, Liao R, Rosenzweig A (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277:22896–901

    PubMed  CAS  Google Scholar 

  72. Latronico MV, Costinean S, Lavitrano ML, Peschle C, Condorelli G (2004) Regulation of cell size and contractile function by AKT in cardiomyocytes. Ann N Y Acad Sci 1015:250–60

    PubMed  CAS  Google Scholar 

  73. Shiraishi I, Melendez J, Ahn Y, Skavdahl M, Murphy E, Welch S, Schaefer E, Walsh K, Rosenzweig A, Torella D, Nurzynska D, Kajstura J, Leri A, Anversa P, Sussman MA (2004) Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes. Circ Res 94:884–91

    PubMed  CAS  Google Scholar 

  74. Jonassen AK, Sack MN, Mjos OD, Yellon DM (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89:1191–8

    PubMed  CAS  Google Scholar 

  75. Sack MN, Yellon DM (2003) Insulin therapy as an adjunct to reperfusion after acute coronary ischemia: A proposed direct myocardial cell survival effect independent of metabolic modulation. J Am Coll Cardiol 41:1404–7

    PubMed  CAS  Google Scholar 

  76. Dzau VJ (2003) Predicting the future of human gene therapy for cardiovascular diseases: What will the management of coronary artery disease be like in 2005 and 2010? Am J Cardiol 92:32N–35N

    PubMed  Google Scholar 

  77. Baumgartner I, Isner JM (2001) Somatic gene therapy in the cardiovascular system. Annu Rev Physiol 63:427–50

    PubMed  CAS  Google Scholar 

  78. Pislau S, Janssens Sp, Gersh BJ, Simari RD (2002) Defining gene transfer before expecting gene therapy: Putting the horse before the cart. Circulation 106:631–6

    Google Scholar 

  79. Isner JM, Vale PR, Symes JF, Losordo DW (2001) Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 89:389–400

    PubMed  CAS  Google Scholar 

  80. Morishita R, Higaki J, Tomita N, Ogihara T (1998) Application of transcription factor “decoy” strategy of gene therapy and study of gene expression in cardiovascular disease. Circ Res 82:1023–8

    PubMed  CAS  Google Scholar 

  81. Chaudhri BB, del Monte F, Harding SE, Hajjar RJ (2004) Gene transfer in cardiac myocytes. Surg Clin North Am 84:141–59

    PubMed  Google Scholar 

  82. Melo LG, Agrawal R, Zhang L, Rezvani M, Mangi AA, Ehsan A, Griese DP, Dell’Acqua G, Mann MJ, Oyama J, Yet SF, Layne MD, Perrella MA, Dzau VJ (2002) Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 105:602–7

    PubMed  CAS  Google Scholar 

  83. Abunasra HJ, Smolenski RT, Morrison K, Yap J, Sheppard MN, O’Brien T, Suzuki K, Jayakumar J, Yacoub MH (2001) Efficacy of adenoviral gene transfer with manganese superoxide dismutase and endothelial nitric oxide synthase in reducing ischemia and reperfusion injury. Eur J Cardiothorac Surg 20:153–8

    PubMed  CAS  Google Scholar 

  84. Jayakumar J, Suzuki K, Sammut IA, Smolenski RT, Khan M, Lauf N, Abunasra H, Murtuza B, Amrani M, Yacoub MH (2001) Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury. Circulation 104:I303–7

    PubMed  CAS  Google Scholar 

  85. Chatterjee S, Stewart AS, Bish LT, Jayasankar V, Kim EM, Pirolli T, Burdick J, Woo YJ, Gardner TJ, Sweeney HL (2002) Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic postischemic heart failure. Circulation 106:I212–7

    PubMed  Google Scholar 

  86. Weisleder N, Taffet GE, Capetanaki Y (2004) Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proc Natl Acad Sci USA 101:769–74

    PubMed  CAS  Google Scholar 

  87. Stacpoole PW, Owen R, Flotte TR (2003) The pyruvate dehydrogenase complex as a target for gene therapy. Curr Gene Ther 3:239–45

    PubMed  CAS  Google Scholar 

  88. McGregor A, Temperley R, Chrzanowska-Lightowlers ZM, Lightowlers RN (2001) Absence of expression from RNA internalised into electroporated mammalian mitochondria. Mol Genet Genomics 265:721–9

    PubMed  CAS  Google Scholar 

  89. Turnbull DM, Lightowlers RN (2002) A roundabout route to gene therapy. Nat Genet 30:345–6

    PubMed  CAS  Google Scholar 

  90. Chinnery PF (2004) New approaches to the treatment of mitochondrial disorders. Reprod Biomed Online 8:16–23

    Article  PubMed  CAS  Google Scholar 

  91. Tanaka M, Borgeld HJ, Zhang J, Muramatsu S, Gong JS, Yoneda M, Maruyama W, Naoi M, Ibi T, Sahashi K, Shamoto M, Fuku N, Kurata M, Yamada Y, Nishizawa K, Akao Y, Ohishi N, Miyabayashi S, Umemoto H, Muramatsu T, Furukawa K, Kikuchi A, Nakano I, Ozawa K, Yagi K (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 9:534–41

    PubMed  CAS  Google Scholar 

  92. Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, Martinuzzi A, Hauswirth WW, Lewin AS (2002) Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Ann Neurol 52:534–42

    PubMed  CAS  Google Scholar 

  93. Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J, Schon EA (2002) Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet 30:394–9

    PubMed  CAS  Google Scholar 

  94. Ojaimi J, Pan J, Santra S, Snell WJ, Schon E (2002) An algal nucleus-encoded subunit of mitochondrial ATP synthase rescues a defect in the analogous human mitochondrial-encoded subunit. Mol Biol Cell 13:3836–44

    PubMed  CAS  Google Scholar 

  95. Manfredi G, Gupta N, Vazquez-Memije ME, Sadlock JE, Spinazzola A, De Vivo DC, Schon EA (1999) Oligomycin induces a decrease in the cellular content of a pathogenic mutation in the human mitochondrial ATPase 6 gene. J Biol Chem 274:9386–91

    PubMed  CAS  Google Scholar 

  96. Fu K, Hartlen R, Johns T, Genge A, Karpati G, Shoubridge EA (1996) A novel heteroplasmic tRNAleu(CUN) mtDNA point mutation in a sporadic patient with mitochondrial encephalomyopathy segregates rapidly in skeletal muscle and suggests an approach to therapy. Hum Mol Genet 5:1835–40

    PubMed  CAS  Google Scholar 

  97. Clark KM, Bindoff LA, Lightowlers RN, Andrews RM, Griffiths PG, Johnson MA, Brierley EJ, Turnbull DM (1997) Reversal of a mtDNA defect in human skeletal muscle. Nat Genet 16:222–4

    PubMed  CAS  Google Scholar 

  98. Taivassalo T, Fu K, Johns T, Arnold D, Karpati G, Shoubridge EA (1999) Gene shifting: A novel therapy for mitochondrial myopathy. Hum Mol Genet 8:1047–52

    PubMed  CAS  Google Scholar 

  99. Chinnery PF, Taylor RW, Diekert K, Lill R, Turnbull DM, Lightowlers RN (1999) Peptide nucleic acid delivery to human mitochondria. Gene Ther 6:1919–28

    PubMed  CAS  Google Scholar 

  100. Taylor RW, Chinnery PF, Turnbull DM, Lightowlers RN (1997) Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet 15:212–5

    PubMed  CAS  Google Scholar 

  101. Muratovska A, Lightowlers RN, Taylor RW, Turnbull DM, Smith RA, Wilce JA, Martin SW, Murphy MP (2001) Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: Implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res 29:1852–63

    PubMed  CAS  Google Scholar 

  102. Geromel V, Cao A, Briane D, Vassy J, Rotig A, Rustin P, Coudert R, Rigaut JP, Munnich A, Taillandier E (2001) Mitochondria transfection by oligonucleotides containing a signal peptide and vectorized by cationic liposomes. Antisense Nucleic Acid Drug Dev 11:175–80

    PubMed  CAS  Google Scholar 

  103. Flierl A, Jackson C, Cottrell B, Murdock D, Seibel P, Wallace DC (2003) Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol Ther 7:550–7

    PubMed  CAS  Google Scholar 

  104. Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J (1998) DQAsomes: A novel potential drug and gene delivery system made from Dequalinium. Pharm Res 15:334–7

    PubMed  CAS  Google Scholar 

  105. D’Souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V (2003) DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release 92:189–97

    PubMed  CAS  Google Scholar 

  106. Weissig V, Cheng SM, D’Souza GG (2004) Mitochondrial pharmaceutics. Mitochondrion 3:229–44

    PubMed  CAS  Google Scholar 

  107. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. J Biol Chem 276:4588–96

    PubMed  CAS  Google Scholar 

  108. Smith RA, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci USA 100:5407–12

    PubMed  CAS  Google Scholar 

  109. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death and reperfusion injury. J Biol Chem 279: 34682–90

    PubMed  CAS  Google Scholar 

  110. Lin TK, Hughes G, Muratovska A, Blaikie FH, Brookes PS, Darley-Usmar V, Smith RA, Murphy MP (2002) Specific modification of mitochondrial protein thiols in response to oxidative stress: A proteomics approach. J Biol Chem 277:17048–56

    PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Treatment of Mitochondrial-Based Cardiac Diseases. Targeting the Organelle. In: Marín-García, J. (eds) Mitochondria and the Heart. Developments in Cardiovascular Medicine, vol 256. Springer, Boston, MA. https://doi.org/10.1007/0-387-25575-3_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-25575-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25574-3

  • Online ISBN: 978-0-387-25575-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics