Skip to main content

Leaf to Landscape

  • Chapter
Photosynthetic Adaptation

Part of the book series: Ecological Studies ((ECOLSTUD,volume 178))

Abstract

One fundamental “problem” for maximizing carbon gain at the leaf and higher organizational levels entails the link between light capture and leaf energy budgets. The balance between the two processes, however, depends on the environment. For example, shade environments limit carbon gain due to low light levels, and so we would expect plants to display traits that maximize light interception and traits that facilitate survival in a low-resource environment (relative to photosynthesis). These topics have received wide attention and have been reviewed numerous times (for the most relevant contributions in the context of this book, see Ackerly 1996, Poorter 1999, Poorter and Werger 1999, Valladares 1999, Walters and Reich 1999; see also Chapter 2). Conversely, in high-light environments, leaf energy balance becomes the driving force for structural traits. This is particularly true for environments that are at the same time limited by water availability. Similarly, although in the opposite direction, leaf energy balance is a major factor in carbon gain in cold environments. A third significant environmental axis is nutrient availability which, when limiting, can result in evergreen, often sclerophyllous, leaves which have potentially low photosynthetic capacity but high efficiency of resource utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, M. D. 1990. Adaptations and responses to drought in Quercus species of North America. Tree Physiol. 7:227–238.

    PubMed  Google Scholar 

  • Ackerly, D. D. 1996. Canopy structure and dynamics: Integration of growth processes in tropical pioneer trees. In: Tropical Forest Plant Ecophysiology. S. S. Mulkey, R. L. Chazdon, and A. P. Smith (eds.), pp. 619–658. New York: Chapman and Hall.

    Google Scholar 

  • Ackerly, D. D., Knight, C. A., Weiss, S. B., Barton, K., and Starmer, K. P. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analysis. Oecologia 130:449–457.

    Article  Google Scholar 

  • Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grunwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T. 2000. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res. 30:113–175.

    Article  CAS  Google Scholar 

  • Ball, M. C., Hodges, V. S., and Laughlin, G. P. 1991. Cold-induced photoinhibition limits regeneration of snow gum at tree-line. Funct. Ecol. 5:663–668.

    Article  Google Scholar 

  • Ball, M.C., Egerton, J. J. G., Leuning, R., Cunningham, R. B., and Dunne, P. 1997. Microclimate above grass adversely affects spring growth of seedling snow gum Eucalyptus pauciflora. Plant Cell Environ. 20:155–166.

    Article  Google Scholar 

  • Bao, Y., and Nilsen, E. T. 1988. The ecophysiological significance of leaf movements in Rhododendron maximum. Ecology 69:1578–1587.

    Article  Google Scholar 

  • Beadle, N. C. W. 1966. Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology 47:992–1007.

    Article  Google Scholar 

  • Bergh, J., Linder, S., Lundmark, T., and Elfving, B. 1999. The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. For. Ecol. Manage. 119:51–62.

    Article  Google Scholar 

  • Berry, S. L., and Roderick, M. L. 2002. Estimating mixtures of leaf functional types using continental-scale satellite and climatic data. Global Ecol. Biogeogr. 11:23–39.

    Article  Google Scholar 

  • Chapin, F. S. III, Autumn, K., and Pugnaire, F. 1993. Evolution of suites of traits in response to environmental stress. Am. Nat. 142:S78–S92.

    Article  Google Scholar 

  • Comstock, J. P. 2000. Variation in hydraulic architecture and gas-exchange in two desert sub-shrubs, Hymenoclea salsola T. and G.. and Ambrosia dumosa Payne. Oecologia 125:1–10.

    Article  Google Scholar 

  • Comstock, J. P., and Ehleringer, J. R. 1988. Contrasting photosynthetic behavior in leaves and twigs of Hymenoclea salsola, a green-twigged warm desert shrub. Am. J. Bot. 75:1360–1370.

    Article  Google Scholar 

  • Comstock, J., and Ehleringer, J. 1990. Effect of variations in leaf size on morphology and photosynthetic rate of twigs. Funct. Ecol. 4:209–221.

    Article  Google Scholar 

  • Comstock, J. P., Cooper, T. A., and Ehleringer, J. R. 1988. Seasonal patterns of canopy development and carbon gain in nineteen warm desert shrub species. Oecologia 75:327–335.

    Article  Google Scholar 

  • Cordell, S., Goldstein, G., Mueller-Dombois, D., Webb, D., and Vitousek, P. M. 1998. Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: The role of phenotypic plasticity. Oecologia 113:188–196.

    Article  Google Scholar 

  • Cordell, S., Goldstein, G., Meinzer, F. C., and Handley, L. L. 1999. Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient. Funct Ecol. 13:811–818.

    Article  Google Scholar 

  • Dudley, S. A. 1996. Differing selection on plant physiological traits in response to environmental water availability: A test of adaptive hypotheses. Evolution 50:92–102.

    Article  Google Scholar 

  • Egerton, J. J. G., Banks, J. C. G., Gibson, A., Cunningham, R. B., and Ball, M. C. 2000. Facilitation of seedling establishment: Reduction in irradiance enhances winter growth of Eucalyptus pauciflora. Ecology 81:1437–1449.

    Google Scholar 

  • Ehleringer, J. 1982. The influence of water stress and temperature on leaf pubescence development in Encelia farinosa. Am. J. Bot. 69:670–675.

    Article  Google Scholar 

  • Ehleringer, J. R., and Cook, C. S. 1990. Characteristics of Encelia species differing in leaf reflectance and transpiration rate under common garden conditions. Oecologia 82: 484–489.

    Article  Google Scholar 

  • Ehleringer, J., Mooney, H. A., Gulmon, S. L., and Rundel, P. W. 1981. Parallel evolution of leaf pubescence in Encelia in coastal deserts of North and South America. Oecologia 49:38–41.

    Article  Google Scholar 

  • Ehleringer, J. R., Comstock, J. P., and Cooper, T. A. 1987. Leaf-twig carbon isotope ratio differences in photosynthetic-twig desert shrubs. Oecologia 71:318–320.

    Article  Google Scholar 

  • Ellsworth, D. S., and Reich, P. B. 1993. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178.

    Article  Google Scholar 

  • Evans, J. R., and Loreto, F. 2000. Acquisition and diffusion of CO2 in higher plant leaves. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp 321–351. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Ezcurra, E., Montana, C., and Arizaga, S. 1991. Architecture, light interception, and distribution of Larrea species in the Monte Desert, Argentina. Ecology 72:23–34.

    Article  Google Scholar 

  • Ezcurra, E., Arizaga, S., Valverde, P. L., Mourelle, C., and Flores-Martinez, A. 1992. Foliole movement and canopy architecture of Larrea tridentata DC. Cov. in Mexican deserts. Oecologia 92:83–89.

    Article  Google Scholar 

  • Gauslaa, Y. 1984. Heat resistance and energy budget in different Scandanavian plants. Holarctic Ecol. 7:1–78.

    Google Scholar 

  • Geller, G. N., and Nobel, P. S. 1986. Branching patterns of columnar cacti: Influences on PAR interception and CO2 uptake. Am. J. Bot. 73:1193–1200.

    Article  Google Scholar 

  • Germino, M. J., and Smith, W. K. 1999. Sky exposure, crown architecture, and low-temperature photoinhibition in conifer seedlings at alpine treeline. Plant Cell Environ. 22:407–415.

    Article  Google Scholar 

  • Germino, M, J., and Smith, W. K. 2000a. High resistance to low-temperature photoinhibition in two alpine, snowbank species. Physiol. Plant 110:89–95.

    Article  CAS  Google Scholar 

  • Germino, M. J., and Smith, W. K. 2000b. Differences in microsite, plant form, and lowtemperature photoinhibition in alpine plants. Arctic Antarctic Alp. Res. 32:388–396.

    Article  Google Scholar 

  • Germino, M. J., and Smith, W. K. 2001. Relative importance of microhabitat, plant form and photosynthetic physiology to carbon gain in two alpine herbs. Funct. Ecol. 15:243–251.

    Article  Google Scholar 

  • Gibson, A. C. 1996. Structure-Function Relations of Warm Desert Plants. Berlin: Springer-Verlag.

    Google Scholar 

  • Gibson, A. C. 1998. Photosynthetic organs of desert plants. BioScience. 48:911–920.

    Article  Google Scholar 

  • Goldstein, G., Drake, D. R., Melcher, P., Giambelluca, T. W., and Heraux, J. 1996. Photosynthetic gas exchange and temperature-induced damage in seedlings of the tropical alpine species Argyroxiphium sandwicense. Oecologia 106:298–307.

    Article  Google Scholar 

  • Groom, P. K., and Lamont, B. B. 1997. Xerophytic implications of increased sclerophylly: Interactions with water and light in Hakea psilorrhyncha seedlings. New Phytologist 136:231–237.

    Article  Google Scholar 

  • Gutschick, V. P., and Wiegel, F. W. 1988. Optimizing the canopy photosynthetic rate by patterns of investment in specific leaf mass. Am. Nat. 132:67–86.

    Article  Google Scholar 

  • Hadley, J., Smith, W. K. 1987. Influence of krummholz mat microclimate on needle physiology and survival. Oecologia 73:82–90.

    Article  Google Scholar 

  • Hultine, K. R., and Marshall, J. D. 2000. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123:32–40.

    Article  Google Scholar 

  • Jarvis, P. G., and Leverenz, J. W. 1983. Productivity of temperate, deciduous, and evergreen forests. In: Encyclopedia of Plant Physiology, New Series, Vol. 12D. O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler (eds.), pp. 233–280. Berlin: Springer-Verlag.

    Google Scholar 

  • Jordan, D. N., and Smith, W. K. 1994. Energy balance analysis of nighttime leaf temperatures and frost formation in a subalpine environment. Agric. For. Meteorol. 71:359–372.

    Article  Google Scholar 

  • Jordan, D. N., and Smith, W. K. 1995a. Microclimate factors influencing the frequency and duration of growth season frost for subalpine plants. Agric. For. Meteorol. 77:17–30.

    Article  Google Scholar 

  • Jordan, D. N., and Smith, W. K. 1995b. Radiation frost susceptibility and the association between sky exposure and leaf size. Oecologia 103:43–48.

    Article  Google Scholar 

  • Kaiser, W. M. 1987a. Effects of water deficit on photosynthetic capacity. Physiol. Plant. 71:142–149.

    Article  CAS  Google Scholar 

  • Kaiser, W. M. 1987b. Methods for studying the mechanisms of water stress effects on photosynthesis. In: Plant Responses to Stress: Functional Analysis in Mediterranean Ecosystems. J. D. Tenhunen, F. M. Catarino, O. L. Lange, and W. C. Oechel (eds.), pp. 77–93. New York: Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  • Körner, C. 1999. Alpine Plant Life: Functional Plant Ecology of High Mountain Systems. Berlin: Springer-Verlag.

    Google Scholar 

  • Küppers, M. 1989. Ecological significance of aboveground architectural patterns in woody plants: a question of cost-benefit relationships. Trends Ecol. Evol. 4:375–379.

    Article  Google Scholar 

  • Lamont, B. B., Groom, P. K., and Cowling, R. M. 2002. High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorous and nitrogen concentrations. Funct. Ecol. 16:403–412.

    Article  Google Scholar 

  • Leuning, R., and Cremer, K. W. 1998. Leaf temperatures during radiation frost. Part 1. Observations. Agric. For. Meteorol. 42:121–133.

    Article  Google Scholar 

  • Leuwchner, C. 2000. Are high elevations in tropical mountains arid environments for plants? Ecology 81:1425–1436.

    Article  Google Scholar 

  • Meziane, D., and Shipley, B. 1999. Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant Cell Environ. 22:447–459.

    Article  Google Scholar 

  • Monson, R. K., Smith, S. D., Gehring, J. L., Bowman, W. D., and Szarek, S. R. 1992. Physiological differentiation within an Encelia farinosa population along a short topographic gradient in the Sonoran Desert. Funct. Ecol. 6:751–759.

    Article  Google Scholar 

  • Morgan, J. M. 1984. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35:299–319.

    Article  Google Scholar 

  • Neufeld, H. S., Meinzer, F. C., Wisdom, C. S., Sharifi, M. R., Rundel, P. W., Neufeld, M. S., Goldring, Y., and Cunningham, G. L. 1988. Canopy architecture of Larrea tridentate DC. Cov., a desert shrub: Foliage orientation and direct beam radiation interception. Oecologia 75:54–60.

    Article  Google Scholar 

  • Niinemets, Ü. 1999. Components of leaf dry mass per area-thickness and density-alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist 144: 35–47.

    Article  Google Scholar 

  • Niinemets, Ü. 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469.

    Article  Google Scholar 

  • Niinemets, Ü., and Kull, O. 1998. Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: Implications for foliage morphological plasticity. Tree Physiol. 18:467–479.

    PubMed  Google Scholar 

  • Niinemets, Ü., and Lukjanova, A. 2003. Needle longevity, shoot growth and branching frequency in relation to site fertility and within-canopy light conditions in Pinus sylvestris. Ann. For. Sci. 60:195–208.

    Article  Google Scholar 

  • Niinemets, Ü., and Tenhunen, J. D. 1997. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20:845–866.

    Article  Google Scholar 

  • Niinemets, Ü., Kull, O., and Tenhunen, J. D. 1999. Variability in leaf morphology and chemical composition as a function of canopy light environment in co-existing trees. Int. J. Plant Sci. 160:837–848.

    Article  PubMed  Google Scholar 

  • Niinemets, Ü., Ellsworth, D. S., Lukjanova, A., and Tobias, M. 2001. Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiol. 21:1231–1244.

    CAS  PubMed  Google Scholar 

  • Niinemets, Ü., Cescatti, A., Lukjanova, A., Tobias, M., and Truus, L. 2002a. Modification of light-acclimation of Pinus sylvestris shoot architecture by site fertility. Agric. For. Meteorol. 11:121–140

    Article  Google Scholar 

  • Niinemets, Ü., Portsmuth, A., and Truus, L. 2002b. Leaf structure and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species. Ann. Bot. 89:191–204.

    Article  CAS  PubMed  Google Scholar 

  • Nilsen, E. T. 1991. The relationship between freezing tolerance and thermotropic leaf movement in five Rhododendron species. Oecologia 87:63–71.

    Article  Google Scholar 

  • Nilsen, E. T., Meinzer, F. C., and Rundel, P. W. 1989. Stem photosynthesis in Psorothamnus spinosus smoke tree in the Sonoran Desert of California. Oecologia 79:193–197

    Article  Google Scholar 

  • Nobel, P. S. 1988. Environmental biology of agaves and cacti. Cambridge: Cambridge University Press.

    Google Scholar 

  • Oleksyn, J., Modrzynski, J. et al. 1998. Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation. Funct. Ecol. 12:573–590.

    Article  Google Scholar 

  • Osmond, C. B., Smith, S. D., Ben, G.-Y., and Sharkey, T. D. 1987. Stem photosynthesis in a desert ephemeral, Eriogonum inflatum: Characterization of leaf and stem CO2 fixation and H2O vapor exchange under controlled conditions. Oecologia 72:542–549.

    Article  Google Scholar 

  • Palmroth, S., Stenberg, P., Smolander, S., Voipio, P., and Smolander, H. 2002. Fertilization has little effect on light-interception efficiency of Picea abies shoots. Tree Physiol. 22: 1185–1192.

    PubMed  Google Scholar 

  • Poorter, L. 1999. Growth responses of fifteen rain forest tree species to a light gradient: The relative importance of morphological and physiological traits. Funct. Ecol. 13:396–410.

    Article  Google Scholar 

  • Poorter, L., and Werger, M. J. A. 1999. Light environment, sapling architecture, and leaf display in six rain forest tree species. Am. J. Bot. 86:1464–1473.

    Article  PubMed  Google Scholar 

  • Rambal, S., Ourcival, J.-M., Joffre, R., Mouillot, F., Nouvellon, Y., Reichstein, M., and Rocheteau, A. 2003. Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: Scaling from leaf to canopy. Global Change Biol. 9:1813–1824.

    Article  Google Scholar 

  • Rasmuson, K. E., Anderson, J. E., and Huntly, N. 1994. Coordination of branch orientation and photosynthetic physiology in the Joshua tree Yucca brevifolia.. Great Basin Nat. 54:204–211.

    Google Scholar 

  • Reich, P. B., Walters, M. B., and Ellsworth, D. S. 1997. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94:13730–13734.

    Article  CAS  PubMed  Google Scholar 

  • Reich, P. B., Ellsworth, D. S., and Walters, M. B. 1998a. Leaf structure specific leaf area. modulates photosynthesis-nitrogen relations: Evidence from within and across species and functional groups. Funct. Ecol. 12:948–958.

    Article  Google Scholar 

  • Reich, P. B., Walters, M. B., Ellsworth, D. S. et al. 1998b. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional groups. Oecologia 114:471–482.

    Article  Google Scholar 

  • Roberntz, P. 1999. Effects of long-term CO2 enrichment and nutrient availability in Norway spruce. I. Phenology and morphology of branches. Trees 13:188–198.

    Google Scholar 

  • Roderick, M. L., Berry, S. L., and Noble, I. R. 2000. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Funct. Ecol. 14:423–437.

    Article  Google Scholar 

  • Rosati, A., Day, K. R., and DeJong, T. M. 2000. Distribution of leaf mass per unit area and leaf nitrogen concentration determine partitioning of leaf nitrogen within tree canopies. Tree Physiol. 20:271–276.

    PubMed  Google Scholar 

  • Sandquist, D. R., Ehleringer, J. R. 1997. Intraspecific variation in leaf pubescence and drought adaptation in Encelia farinosa associated with contrasting desert environments. New Phytologist 135:635–644.

    Article  Google Scholar 

  • Sandquist, D. R., and Ehleringer, J. R. 1998. Intraspecific variation in drought adaptation in brittlebush: Leaf pubescence and timing of leaf loss vary with rainfall. Oecologia 113:162–169.

    Article  Google Scholar 

  • Smith, W. K., and Brewer, C. A. 1994. The adaptive importance of shoot and crown architecture in conifer trees. Am. Nat. 143:528–532.

    Article  Google Scholar 

  • Smith, W. K., and Carter, G. A. 1988. Shoot structural effects on needle temperatures and photosynthesis in conifers. Am. J Bot. 75:496–500.

    Article  Google Scholar 

  • Smith, W. K., and Geller, G. A. 1979. Plant transpiration at high elevations: Theory, field measurements, and comparisons with desert plants. Oecologia 41:109–122.

    Article  Google Scholar 

  • Smith, W. K., and Nobel, P. S. 1977. Influences of seasonal changes in leaf morphology on water-use efficiency for three desert broadleaf shrubs. Ecology 58:1033–1043.

    Article  Google Scholar 

  • Smith, W. K., and Nobel, P. S. 1978. Influence of irradiation, soil water potential, and leaf temperature on leaf morphology in a desert broadleaf, Encelia farinosa Compositae. Am. J. Bot. 65:429–432.

    Article  Google Scholar 

  • Smith, S. D., and Osmond, C. B. 1987. Stem photosynthesis in a desert ephemeral, Eriogonum inflatum: Morphology, stomatal conductance and water-use efficiency in field populations. Oecologia 72:533–541.

    Article  Google Scholar 

  • Smith, W. K., Knapp, A. K., Pearson, J. A., Varman, J. H., Yavitt, J. B., and Young, D. R. 1983. Influence of microclimate and growth form on plant temperatures of early spring species in a high-elevation prairie. Am. Midl. Nat. 109:380–389.

    Article  Google Scholar 

  • Smith, S. D., Didden-Zopfy, B., and Nobel, P. S. 1984. High temperature responses of North American cacti. Ecology 65:643–651.

    Article  Google Scholar 

  • Smith, S. D., Monson, R. K., Anderson, J. E. 1997a. Physiological ecology of North American desert plants. New York: Springer-Verlag.

    Google Scholar 

  • Smith, W. K., Vogelmann, T. C., DeLucia, E. H., Bell, D. T., and Shepherd, K. A. 1997b. Leaf form and photosynthesis. BioScience. 47:785–793.

    Article  Google Scholar 

  • Smith, W. K., Bell, D. T., and Shepherd, K. A. 1998. Associations between leaf structure, orientation, and sunlight exposure in five Western Australian communities. Am. J. Bot. 85:56–63.

    Article  CAS  Google Scholar 

  • Steenbergh, W. F., Lowe, C. H. 1969. Critical factors during the first years of life of the saguaro Cereus giganteus at Saguaro National Monument, Arizona. Ecology 50:825–834.

    Article  Google Scholar 

  • Stenberg, P., Smolander, H., Sprugel, D. G., and Smolander, S. 1998. Shoot structure, light interception, and distribution of nitrogen in an Abies amabilis canopy. Tree Physiol. 18:759–767.

    PubMed  Google Scholar 

  • Syvertsen, J. P., Lloyd, J., McConchie, C., Kriedemann, P. E., and Farquhar, G. D. 1995. On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ. 18:149–157.

    Article  Google Scholar 

  • Szarek, S. R., and Woodhouse, R. M. 1978. Ecophysiological studies of Sonoran Desert plants. IV. Seasonal photosynthetic capacities of Acacia greggii and Cercidium microphyllum. Oecologia 37:221–229.

    Article  Google Scholar 

  • Tardieu, F., and Davies, W. J. 1993. Integration of hydraulic and chemical signaling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ. 16:341–349.

    Article  CAS  Google Scholar 

  • Ustin, S. L., Jacquemoud, S., and Govaerts, Y. 2001. Simulation of photon transport in a three-dimensional leaf: Implications for photosynthesis. Plant Cell Environ. 24:1095–1103.

    Article  Google Scholar 

  • Valladares, F. 1999. Architecture, ecology, and evolution of plant crowns. In: Handbook of Functional Plant Ecology. F. I. Pugnaire and F. Valladares (eds.), pp. 121–194. New York: Marcel Dekker.

    Google Scholar 

  • Valladares, F., and Pearcy, R. W. 1997. Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant Cell Environ. 20:25–36.

    Article  Google Scholar 

  • Valladares, F., and Pearcy, R. W. 1998. The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M. Roem., a California chaparral shrub. Oecologia 114:1–10.

    Article  Google Scholar 

  • Walters, M. B., and Reich, P. B. 1999. Low-light carbon balance and shade tolerance in the seedlings of woody plants: Do winter deciduous and broad-leaved evergreen species differ? New Phytologist 143:143–154.

    Article  Google Scholar 

  • Witkowski, E. T. F., and Lamont, B. B. 1991. Leaf specific mass confounds leaf density and thickness. Oecologia 88:486–493.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Smith, S.D., Naumburg, E., Niinemets, Ü., Germino, M.J. (2004). Leaf to Landscape. In: Smith, W.K., Vogelmann, T.C., Critchley, C. (eds) Photosynthetic Adaptation. Ecological Studies, vol 178. Springer, New York, NY. https://doi.org/10.1007/0-387-27267-4_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-27267-4_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22079-6

  • Online ISBN: 978-0-387-27267-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics