Skip to main content

Leaf to Landscape

  • Chapter
Photosynthetic Adaptation

Part of the book series: Ecological Studies ((ECOLSTUD,volume 178))

Abstract

This chapter focuses on the diffusion of CO2 from the atmosphere to the leaf interior. CO2 diffusion occurs along a concentration gradient from the bulk atmosphere to the sub-stomatal cavity. Along this gradient there are “bottlenecks,” or resistors, which control the rate of flow. The most important of these resistors occur at the leaf and stomatal level. This chapter explores the functioning of these resistors and their importance in constraining CO2 capture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, M. D., and Kubiske, M. E. 1990. Leaf structural characteristics of 31 hardwood and conifer species in central Wisconsin: Influence of light regime and shade-tolerance rank. For. Ecol. Manage. 31:245–253.

    Article  Google Scholar 

  • Baldocchi, D. 1992. A Lagrangian random-walk model for simulating water vapor, CO2 and sensible heat flux densities and scalar profiles over and within a soybean canopy. Bound.-Layer Meteorol. 61:113–144.

    Article  Google Scholar 

  • Baldocchi, D. D. 1997. Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant Cell Environ. 20:1108–1122.

    Article  Google Scholar 

  • Baldocchi, D., and Meyers, T. 1998. On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: A perspective. Agric. For. Meteorol. 90:1–25.

    Article  Google Scholar 

  • Baldocchi, D. D., Verma, S. B., Rosenberg, N. J., Blad, B. L., and Specht, J. E. 1985. Microclimate plant architectural interactions: Influence of leaf width on the mass and energy exchange of a soybean canopy. Agric. For. Meteorol. 35:1–20.

    Article  Google Scholar 

  • Ball, J. T., Woodrow, I. E., and Berry, J. A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in Photosynthesis Research, Vol. IV. J. Biggins (ed.), pp. 221–224. Dordrecht, The Netherlands: Martinus Nijhoff.

    Google Scholar 

  • Becker, P., Meinzer, M. C., and Wullschleger, S. D. 2000. Hydraulic limitation of tree height: A critique. Funct. Ecol. 14:4–11.

    Article  Google Scholar 

  • Beerling, D. J., and Woodward, F. I. 1997. Changes in land plant function over the Phanerozoic: Reconstructions based on the fossil record. Bot. J. Linnaean Soc. 124:137–153.

    Google Scholar 

  • Brenner, A. J., and Jarvis, P. G. 1995. A heated leaf replica technique for determination of leaf boundary layer conductance in the field. Agric. For. Meteorol. 72:261–275.

    Article  Google Scholar 

  • Brown, H. T., and Escombe, F. 1900. Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Philos. Trans. R. Soc. Lond. [Biol.] 193:223–291.

    Article  CAS  Google Scholar 

  • Buckley, T. N., Farquhar, G. D., and Mott, K. A. 1999 Carbon-water balance and patchy stomatal conductance. Oecologia 118:132–143.

    Article  Google Scholar 

  • Campbell, G. S., and Norman, J. M. 1998. Introduction to environmental biophysics. New York: Springer-Verlag.

    Google Scholar 

  • Collatz, C. G., Ball, J. T., Grivet, C., and Berry, J. A. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteorol. 54:107–136.

    Article  Google Scholar 

  • Cowan, I. R. 1977. Stomatal behaviour and environment. Adv. Bot. Res. 4:117–228.

    Article  Google Scholar 

  • Cowan, I. R., and Farquhar, G. D. 1977. Stomatal function in relation to leaf metabolism and environment: Stomatal function in relation of gas exchange. In: Symposium of the Society for Experimental Botany. D. H. Jennings (ed.), Cambridge: Cambridge University Press.

    Google Scholar 

  • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol. 7:357–373.

    Article  Google Scholar 

  • Curtis, P. S., and Wang, X. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia 113:299–313.

    Article  Google Scholar 

  • Dang, Q. L., Margolis, H. A., and Collatz, G. J. 1998. Parameterization and testing of a coupled photosynthesis stomatal conductance model for boreal trees. Tree Physiol. 18:141–153.

    PubMed  Google Scholar 

  • De Pury, D. G. G., and Farquhar, G. D. 1997. Simple scaling of photosynthesis from leaves to canopies without errors of big-leaf models. Plant Cell Environ. 20:537–557.

    Article  Google Scholar 

  • Dickinson, R. E., and Henderson-Sellers, A. 1988. Modelling tropical deforestation: A study of GCM land-surface parametrizations. Quart. J. R. Meteorol. Soc. 114:439–462.

    Article  Google Scholar 

  • Ellsworth, D. S. 1999. CO2 enrichment in a maturing pine forest: Are CO2 exchange and water status in the canopy affected? Plant Cell Environ. 22:461–472.

    Article  Google Scholar 

  • Farquhar, G. D. 1989. Models of integrated photosynthesis of cells and leaves. Philos. Trans. R. Soc. Lond. [Biol.] 323:357–367.

    Article  CAS  Google Scholar 

  • Farquhar, G. D., and von Caemmerer, S. 1982. Modelling of photosynthetic response to the environment. In: Encyclopedia of Plant Physiology, New Series, Vol. 12B. Physiological Plant Ecology II. O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler (eds.), pp. 549–587. Berlin: Springer-Verlag.

    Google Scholar 

  • Field, C., Berry, J. A., and Mooney, H. A. 1982. A portable system for measuring carbon dioxide and water vapour exchange of leaves. Plant Cell Environ. 5:179–186.

    Google Scholar 

  • Field, C. B., Jackson, R. B., and Mooney, H. A. 1995. Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ. 18:1214–1225.

    Article  Google Scholar 

  • Foster, J. R., and Smith, W. K. 1986. Influence of stomatal distribution on transpiration in low-wind environments. Plant Cell Environ. 9:751–759.

    Article  Google Scholar 

  • Franks, P. J., and Farquhar, G. D. 2001. The effects of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiol. 125:935–942.

    Article  CAS  PubMed  Google Scholar 

  • Gay, A. P., and Hurd, R. G. 1975. The influence of light on stomatal density in the tomato. New Phytologist 75:37–46.

    Article  Google Scholar 

  • Gibson, A. C. 1996. Structure-Function Relations of Warm Desert Plants. Berlin: Springer-Verlag.

    Google Scholar 

  • Goulden, M. L., Munger, J. W., Fan, S.-M., Daube, B. C., and Wofsy, S. C. 1996a. Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science 271:1576–1579.

    Article  CAS  Google Scholar 

  • Goulden, M. L., Munger, J. W., Fan, S.-M., Daube, B. C. and Wofsy, S. C. 1996b. Measurements of carbon storage by long-term eddy correlation: Methods and a critical evaluation of accuracy. Global Change Biol. 2:169–182.

    Article  Google Scholar 

  • Grace, J., and Wilson, J. 1976. The boundary layer over a Populus leaf. J. Exper. Bot. 27:231–241.

    Article  Google Scholar 

  • Harley, P. C., and Baldocchi, D. D. 1995. Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parametrization. Plant Cell Environ. 18:1146–1156.

    Article  Google Scholar 

  • Hubbard, R. M., Bond, B. J., and Ryan, M. G. 1999. Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiol. 19:165–172.

    PubMed  Google Scholar 

  • James, S. A., and Bell, D. T. 2000. Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances. Tree Physiol. 20:1007–1018.

    CAS  PubMed  Google Scholar 

  • James, S. A., and Bell, D. T. 2001. Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp. globulus (Myrtaceae). Aust. J. Bot. 49:259–269.

    Article  Google Scholar 

  • Jarvis, P. G. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in the field. Philos. Trans. R. Soc. Lond. [Biol.] 273:593–610.

    Article  CAS  Google Scholar 

  • Jarvis, P. G., and McNaughton, K. G. 1986. Stomatal control of transpiration:scaling up from leaf to region. Adv. Ecol. Res. 15:1–49.

    Article  Google Scholar 

  • Jones, H. G. 1992. Plants and microclimate. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jones, H. G. and Sutherland, R. A. 1991. Stomatal control of xylem embolism. Plant Cell Environ. 14:607–612.

    Article  Google Scholar 

  • Jones, M. M., and Rawson, H. M. 1979. Influence of rate of development of leaf water deficits upon photosynthesis, leaf conductance, water use efficiency, and osmotic potential in sorghum. Physiol. Plant 45:103–111.

    Article  Google Scholar 

  • Katul, G. G., Ellsworth, D. S., and Lai, C. T. 2000. Modelling assimilation and intercellular CO2 from measured conductance: A synthesis of approaches. Plant Cell Environ. 23:1313–1328.

    Article  Google Scholar 

  • Kelliher, F. M., Leuning, R., Raupach, M. R., and Schulze, E.-D. 1995. Maximum conductances for evaporation from global vegetation types. Agric. For. Meteorol. 73:1–16.

    Article  Google Scholar 

  • Knapp, A. K. 1993. Gas exchange dynamics on C3 and C4 grasses: Consequences of differences in stomatal conductance. Ecology 74:113–123.

    Article  Google Scholar 

  • Körner, C. 1994. Leaf diffusive conductances in the major vegetation types of the globe. In: Ecophysiology of Photosynthesis. E. D. Schulze, and M. M. Caldwell (eds.), pp. 463–490. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Kuppers, M. 1984. Carbon relations and competition between woody species in a Central European hedgerow. Oecologia 64:344–354.

    Article  Google Scholar 

  • Laisk, A., Oja, V., and Kull, K. 1980. Statistical distribution of stomatal apertures of Vicia faba and Hordeum vulgare and the Spannungsphase of stomatal opening. J. Exp. Bot. 31:49–58.

    Article  Google Scholar 

  • Lee, T. D., Tjoelker, M. G., Ellsworth, D. S., and Reich, P. B. 2001. Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytologist 150:405–418.

    Article  CAS  Google Scholar 

  • Leuning, R. 1995. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 18:339–356.

    Article  CAS  Google Scholar 

  • Leuning, R., Kelliher, F. M., de Pury, D. G. G., and Schulze, E.-D. 1995. Leaf nitrogen, photosynthesis, conductance and transpiration: Scaling from leaves to canopy. Plant Cell Environ. 18:1183–1200.

    Article  Google Scholar 

  • McNaughton, K. G., and Jarvis, P. G. 1983. Predicting effects of vegetation changes on transpiration and evaporation. In: Water Deficits and Plant Growth, Vol. VII. T. T. Kozlowski (ed.), pp. 1–47. New York: Academic Press.

    Google Scholar 

  • Medlyn, B. E., Barton, C. V. M., Broadmeadow, M. S. J., Ceulemans, R., De Angelis, P., Forstreuter, M., Freeman, M., Jackson, S. B., Kellomaki, S., Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B. D., Strassemeyer, J., Wang, K., Curtis, P. S., and Jarvis, P. G. 2001. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis. New Phytologist 149:247–264.

    Article  Google Scholar 

  • Meinzer, F. C. 2002. Co-ordination of vapour and liquid phase water transport properties in plants. Plant Cell Environ. 25:265–274.

    Article  PubMed  Google Scholar 

  • Miranda, V., Baker, N. R., and Long, S. P. 1981. Anatomical variation along the length of the Zea mays leaf in relation to photosynthesis. New Phytologist 88:595–605.

    Google Scholar 

  • Monteith, J. L. 1995a. Accommodation between transpiring vegetation and the convective boundary layer. J. Hydrol. 166:251–263.

    Article  Google Scholar 

  • Monteith, J. L. 1995b. A reinterpretation of stomatal responses to humidity. Plant Cell Environ. 18:357–364.

    Article  Google Scholar 

  • Monteith, J. L., and Unsworth, M. H. 1990. Principles of Environmental Physics. London: Edward Arnold.

    Google Scholar 

  • Mott, K. A. 1988. Do stomata respond to CO2 concentrations other than intercellular? Plant Physiol. 86:200–203.

    Article  CAS  PubMed  Google Scholar 

  • Mott, K. A., and Parkhurst, D. F. 1991. Stomatal responses to humidity in air and helox. Plant Cell Environ. 14:509–515.

    Article  Google Scholar 

  • Mott, K. A., Gibson, A. C., and O’Leary, J. W. 1982. The adaptive significance of amphistomatic leaves. Plant Cell Environ. 5:455–460.

    Article  Google Scholar 

  • Norman, J. M. 1982. Simulation of microclimates. In: Biometereology and Integrated Pest Management. J. L. Hatfield and I. Thompson (eds.), pp. 65–99. New York: Academic Press.

    Google Scholar 

  • Parkhurst. D. F. 1978. The adaptive significance of stomatal occurrence on one or both surfaces of leaves. J. Ecol. 66:367–383.

    Article  Google Scholar 

  • Parkhurst, D. F., Duncan, P. R., Gates, D. M., and Kreith, F. 1968. Wind tunnel modeling of convection of heat between air and broad leaves of plants. Agric. Meteorol. 5:33–47.

    Article  Google Scholar 

  • Peat, H. J., and Fitter, A. H. 1994. A comparative study of the distribution and density of stomata in the British Flora. Biol. J. Linnaean Soc. 52:377–393.

    Article  Google Scholar 

  • Raupach, M. R., and Finnigan, J. J. 1988. “Single-layer models of evaporation from plant canopies are incorrect but useful, whereas multilayer models are correct but useless”: Discuss. Aust. J. Plant Physiol. 15:705–716.

    Article  Google Scholar 

  • Reich, P. B. 1984. Relationships between leaf age, irradiance, leaf conductance, CO2 exchange and water use efficiency in hybrid poplar. Photosynthetica 18:445–453.

    Google Scholar 

  • Royer, D. L. 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev. Paleobot. Palynol. 114:1–28.

    Article  Google Scholar 

  • Ryan, M. G., and Yoder, B. J. 1997. Hydraulic limits to tree height and tree growth. Bio-Science 47:235–242.

    Google Scholar 

  • Sage, R. F. 1994. Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective. Photosynth. Res. 39:351–368.

    Article  CAS  Google Scholar 

  • Salisbury, E. J. 1927. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philos. Trans. R. Soc. Lond. [Biol.] 216:1–65.

    Article  Google Scholar 

  • Schuepp, P. H. 1993. Tansley Review No. 59. Leaf boundary layers. New Phytologist 125:477–507.

    Article  Google Scholar 

  • Schulze, E.-D., Cermak, J., Matyssek, R., Penka, M., Zimmermann, R., Vasicke, F., Gries, W., and Kucera, J. 1985. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees—A comparison of xylem flow, porometer and cuvette measurements. Oecologia 66:475–483.

    Article  Google Scholar 

  • Schulze, E.-D., Kelliher, F. M., Körner, C., Lloyd, J., and Leuning, R. 1994. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Systemat. 25:629–660.

    Article  Google Scholar 

  • Sellers, P. J., Shuttleworth, J. W., Dorman, J. L., Dalcher, A., and Roberts, J. M. 1989. Calibrating the simple biosphere model (SiB) for Amazonian tropical forest using field and remote sensing data: Part 1: Average calibration with field data. J. Appl. Meteorol. 28:727–759.

    Article  Google Scholar 

  • Sellers, P. J., Hall, F. G., Kelly, R. D., Black, A., Baldocchi, D., Berry, J., Ryan, M. G., Ranson, K. J., Crill, P. M., Lettenmeier, D. P., Margolis, H., Cihlar, J., Newcomer, J., Fitzjarrald, D., Jarvis, P. G., Gower, S. T., Halliwell, D., Williams, D., Goodison, B., Wickland, D. E., and Guertin, F. E. 1997. BOREAS in 1997: Experimental overview, scientific results and future directions. J. Geophys. Res. 102:28731–28769.

    Article  Google Scholar 

  • Smith, W. K., Bell, D. T., and Shepherd, K. A. 1998. Associations between leaf structure, orientation, and sunlight exposure in five western Australian communities. Am. J. Botany. 85:56–63.

    Article  CAS  Google Scholar 

  • Sperry, S., Adler, F. R., Campbell, G. S., and Comstock, J. P. 1998. Limitation of plant water use by rhizosphere and xylem conductance: Results from a model. Plant Cell Environ. 21:347–359.

    Article  Google Scholar 

  • Sugden, A. M. 1985. Leaf anatomy in a Venezuelan montane forest. Bot. J. Linnean Soc. 90:231–241.

    Article  Google Scholar 

  • Tanner, E. V. J., and Kapos, V. 1982. Leaf structure of Jamaican upper montane rainforest trees. Biotropica 14:16–24.

    Article  Google Scholar 

  • Ticha, I. 1982. Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes. Photosynthetica. 16:375–471.

    Google Scholar 

  • Tilman, D. 1986. Resources, competition and the dynamics of plant communities. In Plant Ecology, ed. M. J. Crawley, pp. 51–75. Oxford: Blackwell.

    Google Scholar 

  • Tyree, M. T,. and Ewers, F. W. 1996. Hydraulic architecture of woody tropical plants. In Tropical forest plant ecophysiology, eds. S. S. Mulkey, R. L. Chazdon, and A. P. Smith, pp. 217–243. New York: Chapman and Hall.

    Google Scholar 

  • Valentini, R., Matteucci, G., Dolman, A. J. et al. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865.

    Article  CAS  PubMed  Google Scholar 

  • Van Gardingen, P. R., Jefree, C. E., and Grace, J. 1989. Variation in stomatal aperture in leaves of Avena fatua L. observed by low-temperature scanning electron microscopy. Plant Cell Environ. 12:887–898.

    Article  Google Scholar 

  • Vogel, S. 1970. Convective cooling at low airspeeds and the shapes of broad leaves. J. Exp. Bot. 21:91–101.

    Article  Google Scholar 

  • Weyers, J. D. B., and Lawson, T. 1997. Heterogeneity in stomatal characteristics. Adv. Bot. Res. 26:317–352.

    Article  Google Scholar 

  • Whitehead, D. 1998. Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiol. 18:633–644.

    PubMed  Google Scholar 

  • Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden, M. L., Wofsy, S. C., Shaver, G. R., Melillo, J. M., Munger, J. W., Fan, S.-M., and Nadelhoffer, K. J. 1996. Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest:the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant Cell Environ. 19:911–927.

    Article  Google Scholar 

  • Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden, M. L., Shaver, G. R., and Johnson, L. C. 1997. Predicting gross primary productivity in terrestrial ecosystems. Ecol. Applic. 7:882–894.

    Article  Google Scholar 

  • Williams, M., Malhi, Y., Nobre, A., Rastetter, E. B., Grace, J., and Pereira, M. G. P. 1998. Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: A modelling analysis. Plant Cell Environ. 21:953–968.

    Article  Google Scholar 

  • Williams, M., Bond, B. J., and Ryan, M. G. 2001a. Evaluating different soil and plant hydraulic constraints on tree function using a model and sap flow data from ponderosa pine. Plant Cell Environ. 24:679–690.

    Article  Google Scholar 

  • Williams, M., Law, B. E., Anthoni, P. M., and Unsworth, M. 2001b. Use of a simulation model and ecosystem flux data to examine carbon-water interactions in ponderosa pine. Tree Physiol. 21:287–298.

    CAS  PubMed  Google Scholar 

  • Willmer, C. M., and Fricker, M. 1996. Stomata, 2nd edition. New York: Chapman and Hall.

    Google Scholar 

  • Wilson, K. B., Baldocchi, D. D., and Hanson, P. J. 2001. Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant Cell Environ. 24:571–583.

    Article  Google Scholar 

  • Wong, W. C., Cowan, I. R., and Farquhar, G. D. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426.

    Article  Google Scholar 

  • Woodward, F. I., and Kelly, C. K. 1995. The influence of CO2 concentration on stomatal density. New Phytologist 131:311–327.

    Article  Google Scholar 

  • Woodward, F. I., and Smith, T. M. 1994. Global photosynthesis and stomatal conductance: Modelling the controls by soil and climate. Adv. Bot. Res. 20:1–41.

    Article  Google Scholar 

  • Woodward, F. I., Smith, T. M., and Emanuel, W. R. 1995. A global land productivity and phytogeography model. Global Biogeochem. Cycles 9:471–490.

    Article  CAS  Google Scholar 

  • Wullschleger, S. D., Meinzer, F. C., and Vertessy, R. A. 1998. A review of whole-plant water use studies in trees. Tree Physiol. 18:499–512.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Williams, M., Woodward, F.I., Baldocchi, D.D., Ellsworth, D.S. (2004). Leaf to Landscape. In: Smith, W.K., Vogelmann, T.C., Critchley, C. (eds) Photosynthetic Adaptation. Ecological Studies, vol 178. Springer, New York, NY. https://doi.org/10.1007/0-387-27267-4_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-27267-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22079-6

  • Online ISBN: 978-0-387-27267-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics