Skip to main content

Part of the book series: Springer Texts in Statistics ((STS))

  • 4840 Accesses

Abstract

From the introductory chapter we remember that the basis of probability theory, the empirical basis upon which the modeling of random phenomena rests, is the stabilization of the relative frequencies. In statistics a rule of thumb is to base one’s decisions or conclusions on large samples, if possible, because large samples have smoothing effects, the more wild randomness that is always there in small samples has been smeared out. The frequent use of the normal distribution (less nowadays, since computers can do a lot of numerical work within a reasonable time) is based on the fact that the arithmetic mean of some measurement in a sample is approximately normal when the sample is large. And so on. All of this triggers the notion of convergence. Let X1, X2, . . . be random variables. What can be said about their sum, Sn, as the number of summands increases (n → ∞)? What can be said about the largest of them, maxX1, X2, . . . , Xn as n→∞? What about the limit of sums of sequences? About functions of converging sequences? In mathematics one discusses point-wise convergence and convergence of integrals. When, if at all, can we assert that the integral of a limit equals the limit of the integrals? And what do such statements amount to in the context of random variables?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Convergence. In: Probability: A Graduate Course. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/0-387-27332-8_5

Download citation

Publish with us

Policies and ethics