Skip to main content

The BTB Domain Zinc Finger Proteins

  • Chapter
Zinc Finger Proteins

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The BTB/zinc finger proteins have a wide range of functions in development and homeostasis and a wide range of interactions. The BTB domain appears essential for these proteins to dimerize, facilitate DNA looping, form specific multi-protein structures in the nucleus and interact with co-repressor molecules. The BTB domains of the proteins differ in their affinity for co-repressors and contribution to the transcriptional activity of the proteins. The BTB domain also allows interaction with other BTB proteins perhaps by forming higher order multimers and a network of BTB interactions likely exists. All of the BTB/zinc finger proteins have other important functional domains. PLZF and Bcl6 have a second repression domain, while Miz-1 has an important activation domain internal to the protein. In addition, the zinc fingers of these proteins can interact with co-factors implicated in transcriptional activity as well as nuclear cytoplasmic shuttling. Lastly given the recent information indicating the importance of the BTB domain in ubiquitylation pathways the BTB/zinc finger proteins may also play a role in degradation of specific proteins in the cell. Whether this is related to or distinct from their transcriptional functions remains to be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koonin EV, Senkevich TG, Chernos VI. A family of DNA virus genes that consists of fused portions of unrelated cellular genes. Trends Biochem Sci 1992; 17:213–214.

    Article  PubMed  CAS  Google Scholar 

  2. Godt D, Couderc JL, Cramton SE et al. Pattern formation in the limbs of Drosophila: bric a brac is expressed in both a gradient and a wave-like pattern and is required for specification and proper segmentation of the tarsus. Development 1993; 119:799–812.

    PubMed  CAS  Google Scholar 

  3. Numoto M, Niwa O, Kaplan J et al. Transcriptional repressor ZF5 identifies a new conserved domain in zinc finger proteins. Nucleic Acids Res 1993; 21:3767–3775.

    Article  PubMed  CAS  Google Scholar 

  4. Zollman S, Godt D, Prive GG et al. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc Natl Acad Sci USA 1994; 91:10717–10721.

    Article  PubMed  CAS  Google Scholar 

  5. Bardwell VJ, Treisman R. The POZ domain: a conserved protein-protein interaction motif. Genes Dev 1994; 8:1664–1677.

    PubMed  CAS  Google Scholar 

  6. Ahmad KF, Engel CK, Prive GG. Crystal structure of the BTB domain from PLZF. Proc Natl Acad Sci USA 1998; 95:12123–12128.

    Article  PubMed  CAS  Google Scholar 

  7. Li X, Lopez-Guisa JM, Ninan N et al. Overexpression, purification, characterization, and crystallization of the BTB/POZ domain from the PLZF oncoprotein. J Biol Chem 1997; 272:27324–27329.

    Article  PubMed  CAS  Google Scholar 

  8. Li X, Peng H, Schultz DC et al. Structure-function studies of the BTB/POZ transcriptional repression domain from the promyelocytic leukemia zinc finger oncoprotein. Cancer Res 1999; 59:5275–5282.

    PubMed  CAS  Google Scholar 

  9. Davies JM, Hawe N, Kabarowski J et al. Novel BTB/POZ domain zinc-finger protein, LRF, is a potential target of the LAZ-3/BCL-6 oncogene. Oncogene 1999; 18:365–375.

    Article  PubMed  CAS  Google Scholar 

  10. Daniel JM, Reynolds AB. The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol 1999; 19:3614–3623.

    PubMed  CAS  Google Scholar 

  11. Hoatlin ME, Zhi Y, Ball H et al. A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF. Blood 1999; 94:3737–3747.

    PubMed  CAS  Google Scholar 

  12. Okabe S, Fukuda T, Ishibashi K et al. BAZF, a novel Bcl6 homolog, functions as a transcriptional repressor. Mol Cell Biol 1998; 18:4235–4244.

    PubMed  CAS  Google Scholar 

  13. Huynh KD, Bardwell VJ. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 1998; 17:2473–2484.

    Article  PubMed  CAS  Google Scholar 

  14. Lin RJ, Nagy L, Inoue S et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391:811–814.

    Article  PubMed  CAS  Google Scholar 

  15. Hong SH, David G, Wong CW et al. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94:9028–9033.

    Article  PubMed  CAS  Google Scholar 

  16. Guidez F, Ivins S, Zhu J et al. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML-and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 1998; 91:2634–2642.

    PubMed  CAS  Google Scholar 

  17. Wong CW, Privalsky ML. Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6. J Biol Chem 1998; 273:27695–27702.

    Article  PubMed  CAS  Google Scholar 

  18. David G, Alland L, Hong SH et al. Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 1998; 16:2549–2556.

    Article  PubMed  CAS  Google Scholar 

  19. Dhordain P, Lin RJ, Quief S et al. The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res 1998; 26:4645–4651.

    Article  PubMed  CAS  Google Scholar 

  20. Dhordain P, Albagli O, Lin RJ et al. Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc Natl Acad Sci USA 1997; 94:10762–10767.

    Article  PubMed  CAS  Google Scholar 

  21. He LZ, Guidez F, Tribioli C et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 1998; 18:126–135.

    Article  PubMed  CAS  Google Scholar 

  22. Grignani F, De Matteis S, Nervi C et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391:815–818.

    Article  PubMed  CAS  Google Scholar 

  23. Pintard L, Willis JH, Willems A et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 2003; 425:311–316.

    Article  PubMed  CAS  Google Scholar 

  24. Xu L, Wei Y, Reboul J et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 2003; 425:316–321.

    Article  PubMed  CAS  Google Scholar 

  25. Krek W. BTB proteins as henchmen of Cul3-based ubiquitin ligases. Nat Cell Biol 2003; 5:950–951.

    Article  PubMed  CAS  Google Scholar 

  26. Geyer R, Wee S, Anderson S et al. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell 2003; 12:783–790.

    Article  PubMed  CAS  Google Scholar 

  27. Furukawa M, He YJ, Borchers C et al. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 2003; 5: 1001–1007.

    Article  PubMed  CAS  Google Scholar 

  28. Aravind L, Koonin EV. Fold Prediction and Evolutionary Analysis of the POZ Domain: Structural and Evolutionary Relationship with the Potassium Channel Tetramerization Domain. J Mol Biol 1999; 285:1353–1361.

    Article  PubMed  CAS  Google Scholar 

  29. Uren AG, Vaux DL. TRAF proteins and meprins share a conserved domain. Trends Biochem Sci 1996; 21:244–245.

    Article  PubMed  CAS  Google Scholar 

  30. Xue F, Cooley L. Kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 1993; 72:681–693.

    Article  PubMed  CAS  Google Scholar 

  31. Kreusch A, Pfaffinger PJ, Stevens CF et al. Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 1998; 392:945–948.

    Article  PubMed  CAS  Google Scholar 

  32. Ramos S, Khademi F, Somesh BP et al. Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse. Gene 2002; 298:147–157.

    Article  PubMed  CAS  Google Scholar 

  33. Hamaguchi M, Meth JL, von Klitzing C et al. DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc Natl Acad Sci USA 2002; 99:13647–13652.

    Article  PubMed  CAS  Google Scholar 

  34. Schulman BA, Carrano AC, Jeffrey PD et al. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 2000; 408:381–386.

    Article  PubMed  CAS  Google Scholar 

  35. Stebbins CE, Kaelin WG, Jr, Pavletich NP. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 1999; 284:455–461.

    Article  PubMed  CAS  Google Scholar 

  36. Li JY, English MA, Ball HJ et al. Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J Biol Chem 1997; 272:22447–22455.

    Article  PubMed  CAS  Google Scholar 

  37. Ball HJ, Melnick A, Shaknovich R et al. The promyelocytic leukemia zinc finger (PLZF) protein binds DNA in a high molecular weight complex associated with cdc2 kinase. Nucleic Acids Res 1999; 27:4106–4113.

    Article  PubMed  CAS  Google Scholar 

  38. Yeyati PL, Shaknovich R, Boterashvili S et al. Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene 1999; 18:925–934.

    Article  PubMed  CAS  Google Scholar 

  39. Dong S, Zhu J, Reid A et al. Amino-terminal protein-protein interaction motif (POZ-domain) is responsible for activities of the promyelocytic leukemia zinc finger-retinoic acid receptor-alpha fusion protein. Proc Natl Acad Sci USA 1996; 93:3624–3629.

    Article  PubMed  CAS  Google Scholar 

  40. Melnick A, Ahmad KF, Arai S et al. In-depth mutational analysis of the promyelocytic leukemia zinc finger BTB/POZ domain reveals motifs and residues required for biological and transcriptional functions. Mol Cell Biol 2000; 20:6550–6567.

    Article  PubMed  CAS  Google Scholar 

  41. Kim CA, Phillips ML, Kim W et al. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J 2001; 20:4173–4182.

    Article  PubMed  CAS  Google Scholar 

  42. Kim CA, Gingery M, Pilpa RM, Bowie JU. The SAM domain of polyhomeotic forms a helical polymer. Nat Struct Biol 2002; 9:453–457.

    PubMed  CAS  Google Scholar 

  43. Dhordain P, Albagli O, Ansieau S et al. The BTB/POZ domain targets the LAZ3/BCL6 oncoprotein to nuclear dots and mediates homomerisation in vivo. Oncogene 1995; 11:2689–2697.

    PubMed  CAS  Google Scholar 

  44. Espinas ML, Jimenez-Garcia E, Vaquero A et al. The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity. J Biol Chem 1999; 274:16461–16469.

    Article  PubMed  CAS  Google Scholar 

  45. Katsani KR, Hajibagheri MA, Verrijzer CP. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology. EMBO J 1999; 18:698–708.

    Article  PubMed  CAS  Google Scholar 

  46. Farkas G, Gausz J, Galloni M et al. The Trithorax-like gene encodes the Drosophila GAGA factor. Nature 1994; 371:806–808.

    Article  PubMed  CAS  Google Scholar 

  47. Pedone PV, Ghirlando R, Clore GM et al. The single Cys2-His2 zinc finger domain of the GAGA protein flanked by basic residues is sufficient for high-affinity specific DNA binding. Proc Natl Acad Sci USA 1996; 93:2822–2826.

    Article  PubMed  CAS  Google Scholar 

  48. Granok H, Leibovitch BA, Shaffer CD et al. Chromatin. Ga-ga over GAGA factor. Curr Biol 1995; 5:238–241.

    Article  PubMed  CAS  Google Scholar 

  49. Tsukiyama T, Becker PB, Wu C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 1994; 367:525–532.

    Article  PubMed  CAS  Google Scholar 

  50. Shopland LS, Hirayoshi K, Fernandes M et al. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites. Genes Dev 1995; 9:2756–2769.

    PubMed  CAS  Google Scholar 

  51. Yoshida C, Tokumasu F, Hohmura KI et al. Long range interaction of cis-DNA elements mediated by architectural transcription factor Bach1. Genes Cells 1999; 4:643–655.

    Article  PubMed  CAS  Google Scholar 

  52. Pagans S, Ortiz-Lombardia M, Espinas ML et al. The Drosophila transcription factor tramtrack (TTK) interacts with Trithorax-like (GAGA) and represses GAGA-mediated activation. Nucleic Acids Res 2002; 30:4406–4413.

    Article  PubMed  CAS  Google Scholar 

  53. Muto A, Hoshino H, Madisen L et al. Identification of Bach2 as a B-cell-specific partner for small maf proteins that negatively regulate the immunoglobulin heavy chain gene 3′ enhancer. EMBO J 1998; 17:5734–5743.

    Article  PubMed  CAS  Google Scholar 

  54. Melnick A, Carlile G, Ahmad KF et al. Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol Cell Biol 2002; 22:1804–1818.

    Article  PubMed  CAS  Google Scholar 

  55. Deltour S, Guerardel C, Leprince D. Recruitment of SMRT/N-CoR-mSin3A-HDAC-repressing complexes is not a general mechanism for BTB/POZ transcriptional repressors: the case of HIC-1 and gammaFBP-B. Proc Natl Acad Sci USA 1999; 96:14831–14836.

    Article  PubMed  CAS  Google Scholar 

  56. Guerardel C, Deltour S, Leprince D. Evolutionary divergence in the broad complex, tramtrack and bric a brac/poxviruses and zinc finger domain from the candidate tumor suppressor gene hypermethylated in cancer. FEBS Lett 1999; 451:253–256.

    Article  PubMed  CAS  Google Scholar 

  57. Pointud JC, Larsson J, Dastugue B et al. The BTB/POZ domain of the regulatory proteins Bric a brac 1 (BAB1) and Bric a brac 2 (BAB2) interacts with the novel Drosophila TAF(II) factor BIP2/dTAF(II)155. Dev Biol 2001; 237:368–380.

    Article  PubMed  CAS  Google Scholar 

  58. Zheng N, Schulman BA, Song L et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 2002; 416:703–709.

    Article  PubMed  CAS  Google Scholar 

  59. Stebbins CE, Kaelin WG, Jr., Pavletich NP. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 1999; 284:455–461.

    Article  PubMed  CAS  Google Scholar 

  60. Chen Z, Brand NJ, Chen A et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J 1993; 12:1161–1167.

    PubMed  CAS  Google Scholar 

  61. Chen SJ, Zelent A, Tong JH et al. Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. J Clin Invest 1993; 91:2260–2267.

    Article  PubMed  CAS  Google Scholar 

  62. Licht JD, Chomienne C, Goy A et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 1995; 85:1083–1094.

    PubMed  CAS  Google Scholar 

  63. Culligan DJ, Stevenson D, Chee Y et al. Acute promyelocytic leukaemia with t(11;17)(q23;q12–21) and a good initial response to prolonged ATRA and combination chemotherapy. Br J Haematol 1998; 100:328–330.

    Article  PubMed  CAS  Google Scholar 

  64. Grimwade D, Biondi A, Mozziconacci MJ et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Francais de Cytogenetique Hematologique, Groupe de Francais d’Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies”. Blood 2000; 96:1297–1308.

    PubMed  CAS  Google Scholar 

  65. Jansen JH, de Ridder MC, Geertsma WM et al. Complete remission of t(11;17) positive acute promyelocytic leukemia induced by all-trans retinoic acid and granulocyte colony-stimulating factor. Blood 1999; 94:39–45.

    PubMed  CAS  Google Scholar 

  66. Zhang T, Xiong H, Kan LX et al. Genomic sequence, structural organization, molecular evolution, and aberrant rearrangement of promyelocytic leukemia zinc finger gene. Proc Natl Acad Sci USA 1999; 96:11422–11427.

    Article  PubMed  CAS  Google Scholar 

  67. Petti MC, Fazi F, Gentile M et al. Complete remission through blast cell differentiation in PLZF/RARalpha-positive acute promyelocytic leukemia: in vitro and in vivo studies. Blood 2002; 100:1065–1067.

    Article  PubMed  CAS  Google Scholar 

  68. Ball HJ, Melnick A, Shaknovich R et al. The promyelocytic leukemia zinc finger (PLZF) protein binds DNA in a high molecular weight complex associated with cdc2 kinase. Nucleic Acids Res 1999; 27:4106–4113.

    Article  PubMed  CAS  Google Scholar 

  69. Sitterlin D, Tiollais P, Transy C. The RAR alpha-PLZF chimera associated with Acute Promyelocytic Leukemia has retained a sequence-specific DNA-binding domain. Oncogene 1997; 14:1067–1074.

    Article  PubMed  CAS  Google Scholar 

  70. Ivins S, Pemberton K, Guidez F et al. Regulation of Hoxb2 by APL-associated PLZF protein. Oncogene 2003; 22:3685–3697.

    Article  PubMed  CAS  Google Scholar 

  71. Bardwell VJ, Treisman R. The POZ domain: a conserved protein-protein interaction motif. Genes Dev 1994; 8:1664–1677.

    PubMed  CAS  Google Scholar 

  72. Hoatlin ME, Zhi Y, Ball H et al. A Novel BTB/POZ Transcriptional Repressor Protein Interacts With the Fanconi Anemia Group C Protein and PLZF. Blood 1999; 94:3737–3747.

    PubMed  CAS  Google Scholar 

  73. Lin W, Lai CH, Tang CJ et al. Identification and gene structure of a novel human PLZF-related transcription factor gene, TZFP. Biochem Biophys Res Commun. 1999; 264:789–795.

    Article  PubMed  CAS  Google Scholar 

  74. Miaw SC, Choi A, Yu E et al. ROG, repressor of GATA, regulates the expression of cytokine genes. Immunity 2000; 12:323–333.

    Article  PubMed  CAS  Google Scholar 

  75. Tang CJ, Chuang CK, Hu HM et al. The zinc finger domain of Tzfp binds to the tbs motif located at the upstream flanking region of the Aie1 (aurora-C) kinase gene. J Biol Chem 2001; 276:19631–19639.

    Article  PubMed  CAS  Google Scholar 

  76. Dong S, Zhu J, Reid A et al. Amino-terminal protein-protein interaction motif (POZ-domain) is responsible for activities of the promyelocytic leukemia zinc finger-retinoic acid receptor-alpha fusion protein. Proc Natl Acad Sci USA 1996; 93:3624–3629.

    Article  PubMed  CAS  Google Scholar 

  77. Martin PJ, Delmotte MH, Formstecher P et al. PLZF is a negative regulator of retinoic acid receptor transcriptional activity. Nucl Recept 2003; 1:6.

    Article  PubMed  Google Scholar 

  78. Nanba D, Mammoto A, Hashimoto K et al. Proteolytic release of the carboxy-terminal fragment of proHB-EGF causes nuclear export of PLZF. J Cell Biol 2003; 163:489–502.

    Article  PubMed  CAS  Google Scholar 

  79. Reid A, Gould A, Brand N et al. Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors. Blood 1995; 86:4544–4552.

    PubMed  CAS  Google Scholar 

  80. Licht JD, Shaknovich R, English MA et al. Reduced and altered DNA-binding and transcriptional properties of the PLZF-retinoic acid receptor-alpha chimera generated in t(11;17)-associated acute promyelocytic leukemia. Oncogene 1996; 12:323–336.

    PubMed  CAS  Google Scholar 

  81. Koken MH, Reid A, Quignon F et al. Leukemia-associated retinoic acid receptor alpha fusion partners, PML and PLZF, heterodimerize and colocalize to nuclear bodies. Proc Natl Acad Sci USA 1997; 94:10255–10260.

    Article  PubMed  CAS  Google Scholar 

  82. Ruthardt M, Orleth A, Tomassoni L et al. The acute promyelocytic leukaemia specific PML and PLZF proteins localize to adjacent and functionally distinct nuclear bodies. Oncogene 1998; 16:1945–1953.

    Article  PubMed  CAS  Google Scholar 

  83. Hummel J, Wells R, Dubé I et al. Deregulation of NPM and PLZF in a variant t(5;17) case of acute promyelocytic leukemia. Oncogene 1999; 18:633–641.

    Article  PubMed  CAS  Google Scholar 

  84. Melnick A, Licht J. Deconstructing a disease: RARα, its fusion proteins and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999; 93:3167–3215.

    PubMed  CAS  Google Scholar 

  85. Dai MS, Chevallier N, Stone S et al. The effects of the Fanconi anemia zinc finger (FAZF) on cell cycle, apoptosis, and proliferation are differentiation stage-specific. J Biol Chem 2002; 277:26327–26334.

    Article  PubMed  CAS  Google Scholar 

  86. Ward JO, McConnell MJ, Carlile GW et al. The acute promyelocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1,25-dihydroxyvitamin D(3)-induced monocytic differentiation of U937 cells through a physical interaction with vitamin D(3) receptor. Blood 2001; 98:3290–3300.

    Article  PubMed  CAS  Google Scholar 

  87. Labbaye C, Quaranta MT, Pagliuca A et al. PLZF induces megakaryocytic development, activates Tpo receptor expression and interacts with GATA1 protein. Oncogene 2002; 21:6669–6679.

    Article  PubMed  CAS  Google Scholar 

  88. Tsuzuki S, Enver T. Interactions of GATA-2 with the promyelocytic leukemia zinc finger (PLZF) protein, its homologue FAZF, and the t(11;17)-generated PLZF-retinoic acid receptor alpha oncoprotein. Blood 2002; 99:3404–3410.

    Article  PubMed  CAS  Google Scholar 

  89. Cook M, Gould A, Brand N et al. Expression of the zinc-finger gene PLZF at rhombomere boundaries in the vertebrate hindbrain. Proc Natl Acad Sci USA 1995; 92:2249–2253.

    Article  PubMed  CAS  Google Scholar 

  90. Barna M, Hawe N, Niswander L et al. Plzf regulates limb and axial skeletal patterning. Nat Genet 2000; 25:166–172.

    Article  PubMed  CAS  Google Scholar 

  91. Fahnenstich J, Nandy A, Milde-Langosch K et al. Promyelocytic leukaemia zinc finger protein (PLZF) is a glucocorticoid-and progesterone-induced transcription factor in human endometrial stromal cells and myometrial smooth muscle cells. Mol Hum Reprod 2003; 9:611–623.

    Article  PubMed  CAS  Google Scholar 

  92. Wan Y, Nordeen S. Overlapping but Distinct Gene Regulation Profiles by Glucocorticoids and Progestins in Human Breast Cancer Cells. Mol Endo 2002; 16:1204–1214.

    Article  CAS  Google Scholar 

  93. Shaknovich R, Yeyati PL, Ivins S et al. The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Mol Cell Biol 1998; 18:5533–5545.

    PubMed  CAS  Google Scholar 

  94. McConnell M, Chevallier N, Berkofsky-Fessler W et al. Growth Suppression by Acute Promyelocytic Leukemia-Associated Protein PLZF is Mediated by Repression of c-Myc Expression. Mol Cell Bio. 2003; 23:9375–9388.

    Article  CAS  Google Scholar 

  95. Han SH, Jeon JH, Ju HR et al. VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene 2003; 22:4035–4046.

    Article  PubMed  CAS  Google Scholar 

  96. Barna M, Merghoub T, Costoya JA et al. Plzf Mediates Transcriptional Repression of HoxD Gene Expression through Chromatin Remodeling. Dev Cell 2002; 3:499–510.

    Article  PubMed  CAS  Google Scholar 

  97. Ruthardt M, Testa U, Nervi C et al. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha (RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling. Mol Cell Biol 1997; 17:4859–4869.

    PubMed  CAS  Google Scholar 

  98. Gilliland DG, Griffin JD. Role of FLT3 in leukemia. Curr Opin Hematol 2002; 9:274–281.

    Article  PubMed  Google Scholar 

  99. Hong SH, Wong CW, Privalsky ML. Signaling by tyrosine kinases negatively regulates the interaction between transcription factors and SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) corepressor. Mol Endocrinol 1998; 12:1161–1171.

    Article  PubMed  CAS  Google Scholar 

  100. Zhou Y, Gross W, Hong SH et al. The SMRT corepressor is a target of phosphorylation by protein kinase CK2 (casein kinase II). Mol Cell BioChem 2001; 220:1–13.

    Article  PubMed  CAS  Google Scholar 

  101. Hyman J, Chen H, Di Fiore PP et al. Epsin 1 undergoes nucleocytosolic shuttling and its eps15 interactor NH(2)-terminal homology (ENTH) domain, structurally similar to Armadillo and HEAT repeats, interacts with the transcription factor promyelocytic leukemia Zn(2)+ finger protein (PLZF). J Cell Biol 2000; 149:537–546.

    Article  PubMed  CAS  Google Scholar 

  102. Daniel JM, Reynolds AB. The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol 1999; 19:3614–3623.

    PubMed  CAS  Google Scholar 

  103. David G, Alland L, Hong SH et al. Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 1998; 16:2549–2556.

    Article  PubMed  CAS  Google Scholar 

  104. Lin RJ, Nagy L, Inoue S et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391:811–814.

    Article  PubMed  CAS  Google Scholar 

  105. Melnick A, Ahmad KF, Arai S et al. In-depth mutational analysis of the promyelocytic leukemia zinc finger BTB/POZ domain reveals motifs and residues required for biological and transcriptional functions. Mol Cell Biol 2000; 20:6550–6567.

    Article  PubMed  CAS  Google Scholar 

  106. Melnick A, Carlile G, Ahmad KF et al. Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol Cell Biol 2002; 22:1804–1818.

    Article  PubMed  CAS  Google Scholar 

  107. Melnick A, Carlile GW, McConnell MJ et al. AML-1/ETO fusion protein is a dominant negative inhibitor of transcriptional repression by the promyelocytic leukemia zinc finger protein. Blood 2000; 96:3939–3947.

    PubMed  CAS  Google Scholar 

  108. Melnick AM, Westendorf JJ, Polinger A et al. The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein. Mol Cell Biol 2000; 20:2075–2086.

    Article  PubMed  CAS  Google Scholar 

  109. Kang S, Chang W, Cho S et al. Modification of promyelocytic leukemia zinc finger protein (PLZF) by SUMO-1 conjugation regulates its transcriptional repressor activity. J Biol Chem 2003;In Press.

    Google Scholar 

  110. Nagpal S, Saunders M, Kastner P et al. Promoter context-and response element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors. Cell 1992; 70:1007–1019.

    Article  PubMed  CAS  Google Scholar 

  111. Hauksdottir H, Privalsky ML. DNA recognition by the aberrant retinoic acid receptors implicated in human acute promyelocytic leukemia. Cell Growth Differ 2001; 12:85–98.

    PubMed  CAS  Google Scholar 

  112. Perez A, Kastner P, Sethi S et al. PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. EMBO J 1993; 12:3171–3182.

    PubMed  CAS  Google Scholar 

  113. So CW, Dong S, So CK et al. The impact of differential binding of wild-type RARalpha, PML-, PLZF-and NPM-RARalpha fusion proteins towards transcriptional co-activator, RIP-140, on retinoic acid responses in acute promyelocytic leukemia. Leukemia 2000; 14:77–83.

    Article  PubMed  CAS  Google Scholar 

  114. Chen Z, Guidez F, Rousselot P et al. PLZF-RAR alpha fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proc Natl Acad Sci USA 1994; 91:1178–1182.

    Article  PubMed  CAS  Google Scholar 

  115. Puccetti E, Obradovic D, Beissert T et al. AML-associated Translocation Products Block Vitamin D(3)-induced Differentiation by Sequestering the Vitamin D(3) Receptor. Cancer Res 2002; 62:7050–7058.

    PubMed  CAS  Google Scholar 

  116. Tomita A, Buchholz DR, Obata K et al. Fusion protein of retinoic acid receptor alpha with promyelocytic leukemia protein or promyelocytic leukemia zinc finger protein recruits N-CoR-TBLR1 corepressor complex to repress transcription in vivo. J Biol Chem 2003; 278:30788–30795.

    Article  PubMed  CAS  Google Scholar 

  117. Lin RJ, Evans RM. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol Cell 2000; 5:821–830.

    Article  PubMed  CAS  Google Scholar 

  118. Koken MH, Daniel MT, Gianni M et al. Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARalpha fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant t(11;17)(q23;q21) APL patient. Oncogene 1999; 18:1113–1118.

    Article  PubMed  CAS  Google Scholar 

  119. Di Croce L, Raker VA, Corsaro M et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002; 295:1079–1082.

    Article  PubMed  Google Scholar 

  120. Park DJ, Vuong PT, De Vos S et al. Comparative analysis of genes regulated by PML/RAR{alpha} and PLZF/RAR{alpha} in response to retinoic acid using oligonucleotide arrays. Blood 2003; 102:3727–3736.

    Article  PubMed  CAS  Google Scholar 

  121. Cheng GX, Zhu XH, Men XQ et al. Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARalpha and NPM-RARalpha. Proc Natl Acad Sci USA 1999; 96:6318–6323.

    Article  PubMed  CAS  Google Scholar 

  122. Guidez F, Huang W, Tong JH et al. Poor response to all-trans retinoic acid therapy in a t(11;17) PLZF/RAR alpha patient. Leukemia 1994; 8:312–317.

    PubMed  CAS  Google Scholar 

  123. Grimwade D, Gorman P, Duprez E et al. Characterization of cryptic rearrangements and variant translocations in acute promyelocytic leukemia. Blood 1997; 90:4876–4885.

    PubMed  CAS  Google Scholar 

  124. Ball HJ, Melnick A, Shaknovich R et al. The promyelocytic leukemia zinc finger (PLZF) protein binds DNA in a high molecular weight complex associated with cdc2 kinase. Nucleic Acids Res 1999; 27:4106–4113.

    Article  PubMed  CAS  Google Scholar 

  125. He L, Bhaumik M, Tribioli C et al. Two critical hits for promyelocytic leukemia. Mol Cell 2000; 6:1131–1141.

    Article  PubMed  CAS  Google Scholar 

  126. Kerckaert JP, Deweindt C, Tilly H et al. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat Genet 1993; 5:66–70.

    Article  PubMed  CAS  Google Scholar 

  127. Baron BW, Nucifora G, McCabe N et al. Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas. Proc Natl Acad Sci USA 1993; 90:5262–5266.

    Article  PubMed  CAS  Google Scholar 

  128. Ye BH, Lista F, Lo Coco F et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 1993; 262:747–750.

    Article  PubMed  CAS  Google Scholar 

  129. Capello D, Vitolo U, Pasqualucci L et al. Distribution and pattern of BCL-6 mutations throughout the spectrum of B-cell neoplasia. Blood 2000; 95:651–659.

    PubMed  CAS  Google Scholar 

  130. Ye BH. BCL-6 in the pathogenesis of non-Hodgkin’s lymphoma. Cancer Invest 2000; 18:356–365.

    PubMed  CAS  Google Scholar 

  131. Ye BH, Cattoretti G, Shen Q et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet 1997; 16:161–170.

    Article  PubMed  CAS  Google Scholar 

  132. Dent AL, Shaffer AL, Yu X et al. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 1997; 276:589–592.

    Article  PubMed  CAS  Google Scholar 

  133. Fukuda T, Yoshida T, Okada S et al. Disruption of the Bcl6 gene results in an impaired germinal center formation. J Exp Med 1997; 186:439–448.

    Article  PubMed  CAS  Google Scholar 

  134. Dhordain P, Lin RJ, Quief S et al. The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res 1998; 26:4645–4651.

    Article  PubMed  CAS  Google Scholar 

  135. Huynh KD, Bardwell VJ. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 1998; 17:2473–2484.

    Article  PubMed  CAS  Google Scholar 

  136. Wong CW, Privalsky ML. Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6. J Biol Chem 1998; 273:27695–27702.

    Article  PubMed  CAS  Google Scholar 

  137. Privé 6. 2003.

    Google Scholar 

  138. Ahmad K, Melnick A, Lax S et al. Mechanism of SMRT Corepressor Recruitment by the BCL6 BTB Domain. Molecular Cell 2003; 551–564.

    Google Scholar 

  139. Kawamata N, Miki T, Ohashi K et al. Recognition DNA sequence of a novel putative transcription factor, BCL6. Biochem Biophys Res Commun 1994; 204:366–374.

    Article  PubMed  CAS  Google Scholar 

  140. Dhordain P, Albagli O, Honore N et al. Colocalization and heteromerization between the two human oncogene POZ/zinc finger proteins, LAZ3 (BCL6) and PLZF. Oncogene 2000; 19:6240–6250.

    Article  PubMed  CAS  Google Scholar 

  141. Lemercier C, Brocard MP, Puvion-Dutilleul F et al. Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J Biol Chem 2002; 277:22045–22052.

    Article  PubMed  CAS  Google Scholar 

  142. Melnick A. Unpublished results. 2003.

    Google Scholar 

  143. Davies JM, Hawe N, Kabarowski J et al. Novel BTB/POZ domain zinc-finger protein, LRF, is a potential target of the LAZ-3/BCL-6 oncogene. Oncogene 1999;18:365–375.

    Article  PubMed  CAS  Google Scholar 

  144. Vasanwala FH, Kusam S, Toney LM et al. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J Immunol 2002; 169:1922–1929.

    PubMed  CAS  Google Scholar 

  145. Chevallier N, Corcoran C, Lennon C et al. The ETO Protein of t(8;21) AML is a Corepressor for the Bcl-6 B-Cell Lymphoma Oncoprotein. Blood 2004; in press.

    Google Scholar 

  146. Melnick A, Carlile GW, McConnell MJ et al. AML-1/ETO fusion protein is a dominant negative inhibitor of transcriptional repression by the promyelocytic leukemia zinc finger protein. Blood 2000; 96:3939–3947.

    PubMed  CAS  Google Scholar 

  147. Melnick AM, Westendorf JJ, Polinger A et al. The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein. Mol Cell Biol 2000; 20:2075–2086.

    Article  PubMed  CAS  Google Scholar 

  148. Seyfert VL, Allman D, He Y et al. Transcriptional repression by the proto-oncogene BCL-6. Oncogene 1996; 12:2331–2342.

    PubMed  CAS  Google Scholar 

  149. Shaffer AL, Yu X, He Y et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000; 13:199–212.

    Article  PubMed  CAS  Google Scholar 

  150. Albagli O, Lantoine D, Quief S et al. Overexpressed BCL6 (LAZ3) oncoprotein triggers apoptosis, delays S phase progression and associates with replication foci. Oncogene 1999; 18:5063–5075.

    Article  PubMed  CAS  Google Scholar 

  151. Zhang H, Okada S, Hatano M et al. A new functional domain of Bcl6 family that recruits histone deacetylases. Biochim Biophys Acta 2001; 1540:188–200.

    Article  PubMed  CAS  Google Scholar 

  152. Takeda N, Arima M, Tsuruoka N et al. Bcl6 is a transcriptional repressor for the IL-18 gene. J Immunol 2003; 171:426–431.

    PubMed  CAS  Google Scholar 

  153. Toney LM, Cattoretti G, Graf JA et al. BCL-6 regulates chemokine gene transcription in macrophages. Nat Immunol 2000; 1:214–220.

    Article  PubMed  CAS  Google Scholar 

  154. Hosokawa Y, Maeda Y, Seto M. Target genes downregulated by the BCL-6/LAZ3 oncoprotein in mouse Ba/F3 cells. Biochem Biophys Res Commun 2001; 283:563–568.

    Article  PubMed  CAS  Google Scholar 

  155. Reljic R, Wagner SD, Peakman LJ et al. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J Exp Med 2000; 192:1841–1848.

    Article  PubMed  CAS  Google Scholar 

  156. Arima M, Toyama H, Ichii H et al. A putative silencer element in the IL-5 gene recognized by Bcl6. J Immunol 2002; 169:829–836.

    PubMed  CAS  Google Scholar 

  157. Gupta S, Jiang M, Anthony A et al. Lineage-specific modulation of interleukin 4 signaling by interferon regulatory factor 4. J Exp Med 1999; 190:1837–1848.

    Article  PubMed  CAS  Google Scholar 

  158. Dent AL, Hu-Li J, Paul WE et al. T helper type 2 inflammatory disease in the absence of interleukin 4 and transcription factor STAT6. Proc Natl Acad Sci USA 1998; 95:13823–13828.

    Article  PubMed  CAS  Google Scholar 

  159. Dent AL, Doherty TM, Paul WE et al. BCL-6-deficient mice reveal an IL-4-independent, STAT6-dependent pathway that controls susceptibility to infection by Leishmania major. J Immunol 1999; 163:2098–2103.

    PubMed  CAS  Google Scholar 

  160. Harris MB, Chang CC, Berton MT et al. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of iepsilon transcription and immunoglobulin E switching. Mol Cell Biol 1999; 19:7264–7275.

    PubMed  CAS  Google Scholar 

  161. Kusam S, Toney LM, Sato H et al. Inhibition of Th2 differentiation and GATA-3 expression by BCL-6. J Immunol 2003; 170:2435–2441.

    PubMed  CAS  Google Scholar 

  162. Albagli O, Lindon C, Lantoine D et al. DNA replication progresses on the periphery of nuclear aggregates formed by the BCL6 transcription factor. Mol Cell Biol 2000; 20:8560–8570.

    Article  PubMed  CAS  Google Scholar 

  163. Cattoretti G, Chang CC, Cechova K et al. BCL-6 protein is expressed in germinal-center B cells. Blood 1995; 86:45–53.

    PubMed  CAS  Google Scholar 

  164. Onizuka T, Moriyama M, Yamochi T et al. BCL-6 gene product, a 92-to 98-kD nuclear phosphoprotein, is highly expressed in germinal center B cells and their neoplastic counterparts. Blood 1995; 86:28–37.

    PubMed  CAS  Google Scholar 

  165. Allman D, Jain A, Dent A et al. BCL-6 expression during B-cell activation. Blood 1996; 87:5257–5268.

    PubMed  CAS  Google Scholar 

  166. Niu H, Ye BH, Dalla-Favera R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev 1998; 12:1953–1961.

    PubMed  CAS  Google Scholar 

  167. Toyama H, Okada S, Hatano M et al. Memory B cells without somatic hypermutation are generated from Bcl6-deficient B cells. Immunity 2002; 17:329–339.

    Article  PubMed  CAS  Google Scholar 

  168. Wang X, Li Z, Naganuma A, Ye BH. Negative autoregulation of BCL-6 is bypassed by genetic alterations in diffuse large B cell lymphomas. Proc Natl Acad Sci USA 2002; 99:15018–15023.

    Article  PubMed  CAS  Google Scholar 

  169. Moriyama M, Yamochi T, Semba K et al. BCL-6 is phosphorylated at multiple sites in its serine-and proline-clustered region by mitogen-activated protein kinase (MAPK) in vivo. Oncogene 1997; 14:2465–2474.

    Article  PubMed  CAS  Google Scholar 

  170. Shaffer AL, Lin KI, Kuo TC et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 2002; 17:51–62.

    Article  PubMed  CAS  Google Scholar 

  171. Carbone A, Gloghini A, Gaidano G et al. BCL-6 protein expression in human peripheral T-cell neoplasms is restricted to CD30+ anaplastic large-cell lymphomas. Blood 1997; 90:2445–2450.

    PubMed  CAS  Google Scholar 

  172. Hyjek E, Chadburn A, Liu YF. BCL-6 protein is expressed in precursor T-cell lymphoblastic lymphoma and in prenatal and postnatal thymus. Blood 2001; 97:270–276.

    Article  PubMed  CAS  Google Scholar 

  173. Ouyang W, Lohning M, Gao Z et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 2000; 12:27–37.

    Article  PubMed  CAS  Google Scholar 

  174. Yamochi T, Kitabayashi A, Hirokawa M et al. Regulation of BCL-6 gene expression in human myeloid/monocytoid leukemic cells. Leukemia 1997; 11:694–700.

    Article  PubMed  CAS  Google Scholar 

  175. Yoshida T, Fukuda T, Hatano M et al. The role of Bcl6 in mature cardiac myocytes. Cardiovasc Res 1999; 42:670–679.

    Article  PubMed  CAS  Google Scholar 

  176. Yoshida T, Fukuda T, Okabe S et al. The BCL6 gene is predominantly expressed in keratinocytes at their terminal differentiation stage. Biochem Biophys Res Commun 1996; 228:216–220.

    Article  PubMed  CAS  Google Scholar 

  177. Albagli-Curiel O, Dhordain P, Lantoine D et al. Increased expression of the LAZ3 (BCL6) proto-oncogene accompanies murine skeletal myogenesis. Differentiation 1998; 64:33–44.

    Article  PubMed  CAS  Google Scholar 

  178. Kojima S, Hatano M, Okada S et al. Testicular germ cell apoptosis in Bcl6-deficient mice. Development 2001; 128:57–65.

    PubMed  CAS  Google Scholar 

  179. Kumagai T, Miki T, Kikuchi M et al. The proto-oncogene Bcl6 inhibits apoptotic cell death in differentiation-induced mouse myogenic cells. Oncogene 1999; 18:467–475.

    Article  PubMed  CAS  Google Scholar 

  180. Baron BW, Anastasi J, Thirman MJ et al. The human programmed cell death-2 (PDCD2) gene is a target of BCL6 repression: implications for a role of BCL6 in the down-regulation of apoptosis. Proc Natl Acad Sci USA 2002; 99:2860–2865.

    Article  PubMed  CAS  Google Scholar 

  181. Shvarts A, Brummelkamp TR, Scheeren F et al. A senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative p19(ARF)-p53 signaling. Genes Dev 2002; 16:681–686.

    Article  PubMed  CAS  Google Scholar 

  182. Yamochi T, Kaneita Y, Akiyama T et al. Adenovirus-mediated high expression of BCL-6 in CV-1 cells induces apoptotic cell death accompanied by down-regulation of BCL-2 and BCL-X(L). Oncogene 1999; 18:487–494.

    Article  PubMed  CAS  Google Scholar 

  183. Wales MM, Biel MA, el Deiry W et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med 1995; 1:570–577.

    Article  PubMed  CAS  Google Scholar 

  184. Chen WY, Zeng X, Carter MG et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet 2003; 33:197–202.

    Article  PubMed  CAS  Google Scholar 

  185. Deltour S, Pinte S, Guerardel C et al. The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol 2002; 22:4890–4901.

    Article  PubMed  CAS  Google Scholar 

  186. Daniel JM, Spring CM, Crawford HC et al. The p120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res 2002; 30:2911–2919.

    Article  PubMed  CAS  Google Scholar 

  187. Prokhortchouk A, Hendrich B, Jorgensen H et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev 2001; 15:1613–1618.

    Article  PubMed  CAS  Google Scholar 

  188. Kim SW, Fang X, Ji H et al. Isolation and characterization of XKaiso, a transcriptional repressor that associates with the catenin Xp120(ctn) in Xenopus laevis. J Biol Chem 2002; 277:8202–8208.

    Article  PubMed  CAS  Google Scholar 

  189. Yoon HG, Chan DW, Reynolds AB et al. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell 2003; 12:723–734.

    Article  PubMed  CAS  Google Scholar 

  190. Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293:1074–1080.

    Article  PubMed  CAS  Google Scholar 

  191. Peukert K, Staller P, Schneider A et al. An alternative pathway for gene regulation by Myc. EMBO J 1997; 16:5672–5686.

    Article  PubMed  CAS  Google Scholar 

  192. Salghetti SE, Kim SY, Tansey WP. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 1999; 18:717–726.

    Article  PubMed  CAS  Google Scholar 

  193. Staller P, Peukert K, Kiermaier A et al. Repression of p151NK4b expression by Myc through association with Miz-1. Nat Cell Biol 2001; 3:392–399.

    Article  PubMed  CAS  Google Scholar 

  194. Seoane J, Pouponnot C, Staller P et al. TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 2001; 3:400–408.

    Article  PubMed  CAS  Google Scholar 

  195. Seoane J, Le HV, Massague J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 2002; 419:729–734.

    Article  PubMed  CAS  Google Scholar 

  196. Wu S, Cetinkaya C, Munoz-Alonso MJ et al. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 2003; 22:351–360.

    Article  PubMed  CAS  Google Scholar 

  197. Herold S, Wanzel M, Beuger V et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 2002; 10:509–521.

    Article  PubMed  CAS  Google Scholar 

  198. Piluso D, Bilan P, Capone JP. Host cell factor-1 interacts with and antagonizes transactivation by the cell cycle regulatory factor Miz-1. J Biol Chem 2002; 277:46799–46808.

    Article  PubMed  CAS  Google Scholar 

  199. Ziegelbauer J, Shan B, Yager D et al. Transcription factor MIZ-1 is regulated via microtubule association. Mol Cell 2001; 8:339–349.

    Article  PubMed  CAS  Google Scholar 

  200. Mulder NJ, Apweiler R, Attwood TK et al. The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 2003; 31:315–318.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Licht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Privé, G.G., Melnick, A., Ahmad, K.F., Licht, J.D. (2005). The BTB Domain Zinc Finger Proteins. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_20

Download citation

Publish with us

Policies and ethics