Skip to main content

Ca2+-Dependent Modulation of Voltage-Gated Ca2+ Channels

  • Chapter
Voltage-Gated Calcium Channels

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The passage of Ca2+ ions through voltage-gated Ca2+ channels triggers a wide range of signaling pathways but also fundamentally regulates further Ca2+ influx through these channels. Cav1.2 (L-type) and Cav2.1 (P/Q-type) channels undergo a dual feedback regulation by Ca2+, which is manifested as enhanced facilitation and inactivation of Ca2+ currents compared to Ba2+ currents. Ca2+-dependent facilitation and inactivation are distinct biophysical processes but are linked through a common molecular mechanism. The ubiquitous Ca2+-sensing protein calmodulin binds directly to multiple sequences in the Ca2+ channel α1 subunit, causing Ca2+-dependent conformational changes that favor facilitated or inactivated states of the channel. In the nervous system, Ca2+ binding proteins related to CaM also contribute to modulation of Ca2+ channels, which may diversify Ca2+ signaling in different neurons. In all excitable cells, Ca2+-dependent facilitation and inactivation of voltage-gated Ca2+ channels may be a general mechanism for fine-tuning Ca2+ entry to protect against toxic Ca2+ overloads and to control the specificity with which Ca2+-dependent signaling pathways are activated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Naitoh Y. Ionic control of the reversal response of cilia in Paramecium caudatum. A calcium hypothesis. J Gen Physiol 1968; 51:85–103.

    Article  PubMed  CAS  Google Scholar 

  2. Brehm P, Eckert R. Calcium entry leads to inactivation of calcium channel in Paramecium. Science 1978; 202:1203–6.

    Article  PubMed  CAS  Google Scholar 

  3. Brehm P, Eckert R, Tillotson D. Calcium-mediated inactivation of calcium current in Paramecium. J Physiol 1980; 306:193–203.

    PubMed  CAS  Google Scholar 

  4. Tillotson D. Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons. Proc Natl Acad Sci USA 1979; 76:1497–500.

    Article  PubMed  CAS  Google Scholar 

  5. Eckert R, Tillotson, DL. Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurones of Aplysia californica. J Physiol 1981; 314:265–80.

    PubMed  CAS  Google Scholar 

  6. Eckert R, Chad JE. Inactivation of Ca channels. Prog Biophys Mol Biol 1984; 44:215–267.

    Article  PubMed  CAS  Google Scholar 

  7. Byerly L, Hagiwara S. Calcium channel diversity. In: Grinnell AD, Armstrong D, Jackson M, eds. Calcium and Ion Channel Modulation. New York: Plenum Press, Inc., 1990.

    Google Scholar 

  8. Kass RS, Sanguinetti MC. Inactivation of calcium channel current in the calf cardiac Purkinje fiber. Evidence for voltage-and calcium-mediated mechanisms. J Gen Physiol 1984; 84:705–26.

    Article  PubMed  CAS  Google Scholar 

  9. Mentrard D, Vassort G, Fischmeister R. Calcium-mediated inactivation of the calcium conductance in cesium-loaded frog heart cells. J Gen Physiol 1984; 83:105–31.

    Article  PubMed  CAS  Google Scholar 

  10. Lee KS, Marban E, Tsien RW. Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol 1985; 364:395–411.

    PubMed  CAS  Google Scholar 

  11. Hadley RW, Hume JR. An intrinsic potential-dependent inactivation mechanism associated with calcium channels in guinea-pig myocytes. J Physiol 1987; 389:205–22.

    PubMed  CAS  Google Scholar 

  12. Zühlke RG, Pitt GS, Deisseroth K et al. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 1999; 399:159–161.

    Article  PubMed  Google Scholar 

  13. Bechem M, Pott L. Removal of Ca current inactivation in dialysed guinea-pig atrial cardioballs by Ca chelators. Pflugers Arch 1985; 404:10–20.

    Article  PubMed  CAS  Google Scholar 

  14. Chad JE, Eckert R. An enzymatic mechanism for calcium current inactivation in dialysed Helix neurones. J Physiol 1986; 378:31–51.

    PubMed  CAS  Google Scholar 

  15. Sherman A, Keizer J, Rinzel J. Domain model for Ca2+-inactivation of Ca2+ channels at low channel density. Biophys J 1990; 58:985–95.

    PubMed  CAS  Google Scholar 

  16. Imredy JP, Yue DT. Submicroscopic Ca2+ diffusion mediates inhibitory coupling between individual Ca2+ channels. Neuron 1992; 9:197–207.

    Article  PubMed  CAS  Google Scholar 

  17. Keizer J, Maki LW. Conditional probability analysis for a domain model of Ca2+-inactivation of Ca2+ channels. Biophys J 1992; 63:291–295.

    PubMed  CAS  Google Scholar 

  18. Yue DT, Backx PH, Imredy JP. Calcium-sensitive inactivation in the gating of single calcium channels. Science 1990; 250:1735–1738.

    Article  PubMed  CAS  Google Scholar 

  19. Imredy JP, Yue DT. Mechanism of Ca2+-sensitive inactivation of L-type Ca2+ channels. Neuron 1994; 12:1301–1318.

    Article  PubMed  CAS  Google Scholar 

  20. Xia XM, Fakler B, Rivard A et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 1998; 395:503–507.

    Article  PubMed  CAS  Google Scholar 

  21. Marban E, Tsien RW. Enhancement of calcium current during digitalis inotropy in mammalian heart: positive feed-back regulation by intracellular calcium? J Physiol 1982; 329:589–614.

    PubMed  CAS  Google Scholar 

  22. Mitra R, Morad M. Two types of calcium channels in guinea pig ventricular myocytes. Proc Natl Acad Sci 1986; 83:5340–4.

    Article  PubMed  CAS  Google Scholar 

  23. McCarron JG, McGeown JG, Reardon S et al. Calcium-dependent enhancement of calcium cur rent in smooth muscle by calmodulin-dependent protein kinase II. Nature 1992; 357:74–77.

    Article  PubMed  CAS  Google Scholar 

  24. Zygmunt AC, Maylie J. Stimulation-dependent facilitation of the high threshold calcium current in guinea-pig ventricular myocytes. J Physiol (Lond) 1990; 428:653–671

    PubMed  CAS  Google Scholar 

  25. Gurney AM, Charnet P, Pye JM et al. Augmentation of cardiac calcium current by flash photolysis of intracellular caged-Ca2+ molecules. Nature 1989; 341:65–68.

    Article  PubMed  CAS  Google Scholar 

  26. De Leon M, Wang Y, Jones L et al. Essential Ca2+-binding motif for Ca2+-sensitive inactivation of L-type Ca2+ channels. Science 1995; 270:1502–1506.

    Article  PubMed  Google Scholar 

  27. Adams B, Tanabe T. Structural regions of the cardiac Ca channel alpha subunit involved in Ca-dependent inactivation. J Gen Physiol 1997; 110:379–89.

    Article  PubMed  CAS  Google Scholar 

  28. Zhou JM, Olcese R, Qin N et al. Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+-binding function of a motif with similarity to Ca2+-binding domains. Proc Natl Acad Sci USA 1997; 94:2301–2305.

    Article  PubMed  CAS  Google Scholar 

  29. Soldatov NM, Zühlke RD, Bouron A et al. Molecular structures involved in L-type calcium channel inactivation-Role of the carboxyl-terminal region encoded by exons 40–42 in α1C subunit in the kinetics and Ca2+ dependence of inactivation. J Biol Chem 1997; 272:3560–3566.

    Article  PubMed  CAS  Google Scholar 

  30. Soldatov NM, Oz M, O’Brien KA et al. Molecular determinants of L-type Ca2+ channel inactivation-Segment exchange analysis of the carboxyl-terminal cytoplasmic motif encoded by exons 40–42 of the human α1C subunit gene. J Biol Chem. 1998; 273:957–963.

    Article  PubMed  CAS  Google Scholar 

  31. Zühlke RD, Reuter H. Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the α1C subunit. Proc Nad Acad Sci USA 1998; 95:3287–3294.

    Article  Google Scholar 

  32. Saimi Y, Kung C. Calmodulin as an ion channel subunit. Annu Rev Physiol 2002; 64:289–311.

    Article  PubMed  CAS  Google Scholar 

  33. Qin N, Olcese R, Bransby M et al. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc Natl Acad Sci 1999; 96:2435–2438.

    Article  PubMed  CAS  Google Scholar 

  34. Peterson BZ, DeMaria CD, Yue DT. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of 1-type calcium channels. Neuron 1999a;22:549–558.

    Article  PubMed  CAS  Google Scholar 

  35. James P, Vorherr T, Carafoli E. Calmodulin-binding domains: just two faced or multi-faceted? Trends Biochem Sci 1995; 20:38–42.

    Article  PubMed  CAS  Google Scholar 

  36. Pitt GS, Zuhlke RD, Hudmon A et al. Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J Biol Chem 2001; 276:30794–802.

    Article  PubMed  CAS  Google Scholar 

  37. Erickson MG, Alseikhan BA, Peterson BZ et al. Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron 2001; 31:973–85.

    Article  PubMed  CAS  Google Scholar 

  38. Pate P, Mochca-Morales J, Wu Y et al. Determinants for calmodulin binding on voltage-dependent Ca2+ channels. J Biol Chem 2000; 275:39786–39792.

    Article  PubMed  CAS  Google Scholar 

  39. Romanin C, Gamsjaeger R, Kahr H et al. Ca2+ sensors of L-type Ca2+ channel. FEBS Lett 2000;487:301–6.

    Article  PubMed  CAS  Google Scholar 

  40. Ferreira G, Yi J, Rios E et al. Ion-dependent inactivation of barium current through L-type calcium channels. J Gen Physiol 1997; 109:449–461.

    Article  PubMed  CAS  Google Scholar 

  41. Patil PG, Brody DL, Yue DT. Preferential closed-state inactivation of neuronal calcium channels. Neuron 1998; 20:1027–1038.

    Article  PubMed  CAS  Google Scholar 

  42. Ivanina T, Blumenstein Y, Shistik E et al. Modulation of L-type Ca2+ channels by Gβγ and calmodulin via interactions with N and C termini of α1C J Biol Chem 2000; 275:39846–54.

    Article  PubMed  CAS  Google Scholar 

  43. Peterson BZ, Lee JS, Mulle JS et al. Individual amino acids within a consensus EF-hand motif are critical for calcium-dependent inactivation of α1C calcium channels. Biophys J 1999b; 76:A340.

    Google Scholar 

  44. Bernatchcz G, Talwar D, Parent L. Mutations in the EF-hand motif impair the inactivation of barium currents of the cardiac alpha1C channel. Biophys J 1998; 75:1727–39.

    Article  Google Scholar 

  45. Zuhlke RD, Pitt GS, Tsien RW et al. Ca2+-sensitive inactivation and facilitation of L-type Ca2+channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the α1C subunit. J Biol Chem 2000; 275:21121–9.

    Article  PubMed  CAS  Google Scholar 

  46. Schumacher MA, Rivard AF, Bachinger HP et al. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 2001; 410:1120–4.

    Article  PubMed  CAS  Google Scholar 

  47. Dzhura I, Wu Y, Colbran RJ et al. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat Cell Biol 2000; 2:173–7.

    Article  PubMed  CAS  Google Scholar 

  48. Wu Y, Colbran RJ, Anderson ME. Calmodulin kinase is a molecular switch for cardiac excitation-contraction coupling. Proc Natl Acad Sci USA 2001a; 98:2877–81.

    Article  PubMed  CAS  Google Scholar 

  49. Wu Y, Dzhura I, Colbran RJ et al. Calmodulin kinase and a calmodulin-binding ‘IQ’ domain facilitate L-type Ca2+ current in rabbit ventricular myocytes by a common mechanism. J Physiol 2001b; 535:679–87.

    Article  PubMed  CAS  Google Scholar 

  50. Tareilus E, Schoch J, Breer H. Ca2+-dependent inactivation of P-type calcium channels in nerve terminals. J Neurochem 1994; 62:2283–91.

    Article  PubMed  CAS  Google Scholar 

  51. Branchaw JL, Banks MI, Jackson MB. Ca2+-and voltage-dependent inactivation of Ca2+ channels in nerve terminals of the neurohypophysis. J Neurosci 1997; 17:5772–5781.

    PubMed  CAS  Google Scholar 

  52. Forsythe ID, Tsujimoto T, Barnes-Davies M et al. Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 1998; 20:797–807.

    Article  PubMed  CAS  Google Scholar 

  53. Borst JG, Sakmann B. Facilitation of presynaptic calcium currents in the rat brainstem. J Physiol 1998; 513:149–155.

    Article  PubMed  CAS  Google Scholar 

  54. Cuttle MF, Tsujimoto T, Forsythe ID et al. Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J Physiol 1998; 512:723–729.

    Article  PubMed  CAS  Google Scholar 

  55. Lee A, Wong ST, Gallagher D et al. Ca2+ /calmodulin binds to and modulates P/Q-type calcium channels. Nature 1999; 339:155–159.

    Google Scholar 

  56. Cens T, Mangoni ME, Nargeot J et al. Modulation of the α1A Ca2+ channel by β subunits at physiological Ca2+ concentration. FEBS Lett 1996; 391:232–237.

    Article  PubMed  CAS  Google Scholar 

  57. Lee A, Scheuer T, Catterall WA. Ca2+/ calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. J Neurosci 2000; 20:6830–6838.

    PubMed  CAS  Google Scholar 

  58. DeMaria CD, Soong T, Alseikhan BA et al. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 2001; 411:484–489.

    Article  PubMed  CAS  Google Scholar 

  59. Bahler M, Rhoads A. Calmodulin signaling via the IQ motif. FEBS Lett 2002; 513:107–13.

    Article  PubMed  CAS  Google Scholar 

  60. Polans A, Baehr W, Palczewski K. Turned on by Ca2+! The physiology and pathology of Ca2+-binding proteins in the retina. Trends Neurosci 1996; 19:547–554.

    Article  PubMed  CAS  Google Scholar 

  61. Burgoyne RD, Weiss JL. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 2001; 353:1–12.

    Article  PubMed  CAS  Google Scholar 

  62. Pongs O, Lindemeier J, Zhu XR et al. Frequenin-a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 1993; 11:15–28.

    Article  PubMed  CAS  Google Scholar 

  63. McFerran BW, Graham ME, Burgoyne RD. Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem 1998; 273:22768–22772.

    Article  PubMed  CAS  Google Scholar 

  64. Gomez M, De Castro E, Guarin E et al. Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron 2001; 30:241–248.

    Article  PubMed  CAS  Google Scholar 

  65. Wang C-Y, Yang F, He X et al. Ca2+-binding protein frequenin mediates GDNF-induced potentiation of Ca2+ channels and transmitter release. Neuron 2001; 32:99–112.

    Article  PubMed  Google Scholar 

  66. Weiss JL, Archer DA, Burgoyne RD. Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J Biol Chem 2000;275:40082–40087.

    Article  PubMed  CAS  Google Scholar 

  67. Weiss JL, Burgoyne RD. Voltage-independent inhibition of P/Q-type calcium channels in adrenal chromaffin cells via a neuronal calcium sensor-1 dependent pathway involves src family tyrosine kinase. J Biol Chem 2001; 276:44804–44811.

    Article  PubMed  CAS  Google Scholar 

  68. Tsujimoto T, Jeromin A, Saitoh N et al. Neuronal calcium sensor 1 and activity-dependent facilitation of p/q-type calcium currents at presynaptic nerve terminals. Science 2002; 295:2276–9.

    Article  PubMed  CAS  Google Scholar 

  69. Haeseleer F, Sokal I, Verlinde CLMJ et al. Five members of a novel Ca2+-binding protein (CABP) subfamily with similarity to calmodulin. J Biol Chem 2000; 275:1247–1260.

    Article  PubMed  CAS  Google Scholar 

  70. Haeseleer F, Imanishi Y, Sokal I et al. Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. Biochem Biophys Res Commun 2002; 290:615–23.

    Article  PubMed  CAS  Google Scholar 

  71. Lee A, Westenbroek RE, Haeseleer F et al. Differential modulation of Cav2.1 channels by calmodulin and Ca2+-binding protein 1. Nat Neuroscience 2002; 5:210–217.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Lee, A., Catterall, W.A. (2005). Ca2+-Dependent Modulation of Voltage-Gated Ca2+ Channels. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_11

Download citation

Publish with us

Policies and ethics