Skip to main content

Exploring the Function and Pharmacotherapeutic of Potential Voltage-Gated Ca2+ Channels with Gene-Knockout Models

  • Chapter
Voltage-Gated Calcium Channels

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hille B. Ionic channels of excitable membranes. 3 ed. Sunderland: Sinauer, 2001.

    Google Scholar 

  2. Catterall WA. Structure and regulation of voltage-gated calcium channels. Annu Rev Cell Dev Biol 2000;16:521–555.

    Article  PubMed  CAS  Google Scholar 

  3. Striessnig J. Pharmacology, structure and function of cardiac L-type Ca2+ channels. Cell Physiol Biochem 1999;9:242–269.

    Article  PubMed  CAS  Google Scholar 

  4. Glossmann H, Striessnig J. Molecular properties of calcium channels. Rev Physiol Biochem Pharmacol 1990;114:1–105.

    Article  PubMed  CAS  Google Scholar 

  5. Hockerman GH, Peterson BZ, Johnson BD et al. Molecular determinants of drug binding and action on L-type calcium channels. Annu Rev Pharmacol Toxicol 1997;37:361–396.

    Article  PubMed  CAS  Google Scholar 

  6. Striessnig J, Grabner M, Mitterdorfer J et al. Structural basis of drug binding to L calcium channels. Trends Pharmacol Sci 1998;19:108–115.

    Article  PubMed  CAS  Google Scholar 

  7. Tanabe T, Beam KG, Adams BA et al. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 1990;346:567–569.

    Article  PubMed  CAS  Google Scholar 

  8. Tanabe T, Adams BA, Numa S et al. Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature 1991;352:800–803.

    Article  PubMed  CAS  Google Scholar 

  9. Powell JA. Muscular dysgenesis: A model system for studying skeletal muscle development. FASEB J 1990;4:2798–808.

    PubMed  CAS  Google Scholar 

  10. Chaudhari N. A single nudeotide deletion in the skeletal muscle-specific calcium channel transcript of muscular dysgenesis (mdg) mice. J Biol Chem 1992;267:25636–25639.

    PubMed  CAS  Google Scholar 

  11. Beam KG, Adams BA, Niidome T et al. Function of a truncated dihydropyridine receptor as both voltage sensor and calcium channel. Nature 1992;360:169–171.

    Article  PubMed  CAS  Google Scholar 

  12. Flucher BE, Kasielke N, Grabner M. The triad targeting signal of the skeletal muscle calcium channel is localized in the COOH terminus of the α1S subunit. J Cell Biol 2000;151:467–78.

    Article  PubMed  CAS  Google Scholar 

  13. Flucher BE, Kasielke N, Gerster U et al. Insertion of the full-length calcium channel α1S subunit into triads of skeletal muscle in vitro. FEBS Lett 2000;474:93–8.

    Article  PubMed  CAS  Google Scholar 

  14. Takimoto K, Li D, Nerbonne JM, Levitan ES. Distribution, splicing and glucocorticoid-induced expression of cardiac α1C and α1D voltage-gated Ca2+ channel mRNAs. J Mol Cell Cardiol 1997;29:3035–3042.

    Article  PubMed  CAS  Google Scholar 

  15. Bohn G, Moosmang S, Conrad H et al. Expression of T-and L-type calcium channel mRNA in murine sinoatrial node. FEBS Lett 2000;481:73–6.

    Article  PubMed  CAS  Google Scholar 

  16. Reimer D, Huber IG, Garcia ML et al. β subunit heterogeneity of L-type Ca2+ channels in smooth muscle tissues. FEBS Lett 2000;467:65–69.

    Article  PubMed  CAS  Google Scholar 

  17. Liu X, Rusch NJ, Striessnig J et al. Down-regulation of L-type calcium channels in inflamed circular smooth muscle cells of the canine colon. Gastroenterology 2001;120:480–9.

    Article  PubMed  CAS  Google Scholar 

  18. Barg S, Ma X, Eliasson L et al. Fast exocytosis with few Ca2+ channels in insulin-secreting mouse pancreatic B cells. Biophys J 2001;81:3308–23.

    PubMed  CAS  Google Scholar 

  19. Fass DM, Takimoto K, Mains RE et al. Tonic dopamine inhibition of L-type Ca2+ channel activity reduces alpha 1D Ca2+ channel gene expression. J Neurosci 1999;19:3345–3352.

    PubMed  CAS  Google Scholar 

  20. Hell JW, Westenbroek RW, Warner C et al. Identification and differential subcellular localization of the neuronal class C and Class D L-type calcium channel α1 subunits. J Cell Biol 1993;123:949–962.

    Article  PubMed  CAS  Google Scholar 

  21. Jun K, Piedras-Renteria ES, Smith SM et al. Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the α1A-subunit. Proc Natl Acad Sci USA 1999;96:15245–15250.

    Article  PubMed  CAS  Google Scholar 

  22. Graef IA, Mermelstein PG, Stankunas K et al. L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 1999;401:703–708.

    Article  PubMed  CAS  Google Scholar 

  23. Dolmetsch RE, Pajvani U, Fife K et al. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 2001;294:333–9.

    Article  PubMed  CAS  Google Scholar 

  24. Kuzmin A, Semenova S, Ramsey NF et al. Modulation of cocaine intravenous self-administration in drug-naive animals by dihydropyridine Ca2+ channel modulators. Eur J Pharmacol 1996;295:19–25.

    Article  PubMed  CAS  Google Scholar 

  25. Licata SC, Freeman AY, Pierce-Bancroft AF et al. Repeated stimulation of L-type calcium channels in the rat ventral tegmental area mimics the initiation of behavioral sensitization to cocaine. Psychopharmacology (Berl) 2000;152:110–8.

    Article  PubMed  CAS  Google Scholar 

  26. Watson WP, Misra A, Cross AJ et al. The differential effects of felodipine and nitrendipine on cerebral dihydropyridine binding ex vivo and the ethanol withdrawal syndrome in mice. Br J Pharmacol 1994;112:1017–1024.

    PubMed  CAS  Google Scholar 

  27. Jinnah HA, Yitta S, Drew T et al. Calcium channel activation and self-biting in mice. Proc Natl Acad Sci USA 1999;96:15228–32.

    Article  PubMed  CAS  Google Scholar 

  28. Thibault O, Landfield PW. Increase in single L-type calcium channels in hippocampal neurons during aging. Science 1996;272:1017–1020.

    Article  PubMed  CAS  Google Scholar 

  29. Seisenberger C, Specht V, Welling A et al. Functional embryonic cardiomyocytes after disruption of the L-type α1C (Cav1.2) calcium channel gene in the mouse. J Biol Chem 2000;275:39193–9.

    Article  PubMed  CAS  Google Scholar 

  30. Moosmang S, Schulla V, Welling A et al. EMBO J 2003;22:6027–6034.

    Article  PubMed  CAS  Google Scholar 

  31. Schulla V, Renstrom E, Feil R et al. Impaired insulin secretion and glucose tolerance in beta cell-selective Cav1.2 Ca2+ channel null mice. EMBO J 2003;22:3844–3854

    Article  PubMed  CAS  Google Scholar 

  32. Williams ME, Feldman DH, McCue AF et al. Structure and functional expression of alpha1, alpha2, and beta subunits of a novel human neuronal calcium channel subtype. Neuron 1992;8:71–84.

    Article  PubMed  CAS  Google Scholar 

  33. Bell DC, Butcher AJ, Berrow NS et al. Biophysical properties, pharmacology, and modulation of human, neuronal L-type α1D (Cav1.3) voltage-dependent calcium currents. J Neurophysiol 2001;85:816–827.

    PubMed  CAS  Google Scholar 

  34. Iwashima Y, Pugh W, Depaoli AM et al. Expression of calcium channel mRNAs in rat pancreatic islets and downregulation after glucose infusion. Diabetes 1993;42:948–955.

    PubMed  CAS  Google Scholar 

  35. Platzer J, Engel J, Schrott-Fischer A et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type calcium channels. Cell 2000;102:89–97.

    Article  PubMed  CAS  Google Scholar 

  36. Brandt A, Striessnig J, Moser T. Cav1.3 Channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 2003;23:10832–10840.

    PubMed  CAS  Google Scholar 

  37. Glueckert R, Wietzorrek G, Kammen-Jolly K et al. Role of class D L-type Ca2+ channels for cochlear morphology. Hear Res 2003;178:95–105.

    Article  PubMed  CAS  Google Scholar 

  38. Namkung Y, Skrypnyk N, Jeong MJ et al. Requirement for the L-type Ca2+ channel alpha1D subunit in postnatal pancreatic beta cell generation. J Clin Invest 2001;108:1015–22.

    Article  PubMed  CAS  Google Scholar 

  39. Sinnegger-Brauns MJ, Hetzenauer A, Huber IG et al. Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca2+ channels. J Clin Invest 2004;113:1430–1439.

    Article  PubMed  CAS  Google Scholar 

  40. Spassova M, Eisen MD, Saunders JC et al. Chick cochlear hair cell exocytosis mediated by dihydropyridine-sensitive calcium channels. J Physiol 2001;535:689–96.

    Article  PubMed  CAS  Google Scholar 

  41. Zidanic M, Fuchs PA. Kinetic analysis of barium currents in chick cochlear hair cells. Biophys J 1995; 68:1323–1336.

    Article  PubMed  CAS  Google Scholar 

  42. Koschak A, Reimer D, Huber I et al. α1D (Cav1.3) subunits can form 1-type Ca2+ channels activating at negative voltages. J Biol Chem 2001; 276:22100–6.

    Article  PubMed  CAS  Google Scholar 

  43. Xu W, Lipscombe D. Neuronal Cav1.3α1 L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 2001; 21:5944–51.

    PubMed  CAS  Google Scholar 

  44. Safa P, Boulter J, Hales TG. Functional properties of Cav1.3 α1D L-type Ca2+ channel splice variants expressed by rat brain and neuroendocrine GH3 cells. J Biol Chem 2001; 276:38727–37.

    Article  PubMed  CAS  Google Scholar 

  45. Mangoni ME, Nargeot J. Properties of the hyperpolarization-activated current (I(f)) in isolated mouse sino-atrial cells. Cardiovasc Res 2001; 52:51–64.

    Article  PubMed  CAS  Google Scholar 

  46. Mangoni ME, Fontanaud P, Noble PJ et al. Facilitation of the L-type calcium current in rabbit sino-atrial cells: effect on cardiac automaticity. Cardiovasc Res 2000; 48:375–92.

    Article  PubMed  CAS  Google Scholar 

  47. Verheijck EE, van Ginneken AC, Wilders R et al. Contribution of L-type Ca2+ current to electrical activity in sinoatrial nodal myocytes of rabbits. Am J Physiol 1999; 276:H1064–H1077

    PubMed  CAS  Google Scholar 

  48. Zhang Z, Xu Y, Song H et al. Functional Roles of Cav1.3 α1D calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ Res 2002; 90:981–7.

    Article  PubMed  CAS  Google Scholar 

  49. Mangoni ME, Couette B, Bourinet E et al. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci USA 2003; 100:5543–5548.

    Article  PubMed  CAS  Google Scholar 

  50. Boycott KM, Pearce WG, Bech-Hansen NT. Clinical variability among patients with incomplete X-linked congenital stationary night blindness and a founder mutation in CACNA1F. Can J Ophthalmol 2000; 35:204–13.

    PubMed  CAS  Google Scholar 

  51. Pearce SF, Hawrot E. Intrinsic fluorescence of binding-site fragments of the nicotinic acetylcholine. Biochem J 1990; 29:10649–10659.

    Article  CAS  Google Scholar 

  52. Bech-Hansen NT, Naylor MJ, Maybaum TA et al. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19:264–267.

    Article  PubMed  CAS  Google Scholar 

  53. Miyake Y, Yagasaki K, Horiguchi M et al. Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol 1986; 104:1013–20.

    PubMed  CAS  Google Scholar 

  54. Hood DC, Greenstein V. Models of the normal and abnormal rod system. Vision Res 1990; 30:51–68.

    Article  PubMed  CAS  Google Scholar 

  55. Wilkinson MF, Barnes S. The dihydropyridine-sensitive calcium channel subtype in cone photoreceptors. J Gen Physiol 1996; 107:621–30.

    Article  PubMed  CAS  Google Scholar 

  56. Schmitz Y, Witkovsky P. Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience 1997; 78:1209–16.

    Article  PubMed  CAS  Google Scholar 

  57. Taylor WR, Morgans C. Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. Vis Neurosci 1998; 15:541–52.

    Article  PubMed  CAS  Google Scholar 

  58. Nachman-Clewner M, St Jules R, Townes-Anderson E. L-type calcium channels in the photoreceptor ribbon synapse: localization and role in plasticity. J Comp Neurol 1999; 415:1–16.

    Article  PubMed  CAS  Google Scholar 

  59. Koschak A, Reimer D, Walter D et al. Cav1.4α1 subunits can form slowly inactivating dihydropyridine-sensitive L-type Ca2+ channels lacking Ca2+-dependent inactivation. J Neurosci 2003; 23:6041–6049.

    PubMed  CAS  Google Scholar 

  60. Baumann L, Gerstner A, Zong X et al. Functional characterization of the L-type Ca2+ channel Cav1.4α1 from mouse retina. Invest Ophthalmol Vis Sci 2003; 45:708–713.

    Article  Google Scholar 

  61. McRory JE, Hamid J, Doering CJ et al. The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. J Neurosci 2004; 24:1707–1718.

    Article  PubMed  CAS  Google Scholar 

  62. Morgans CW, Gaughwin P, Maleszka R. Expression of the α1F calcium channel subunit by photo-receptors in the rat retina. Mol Vis 2001; 7:202–9.

    PubMed  CAS  Google Scholar 

  63. Strom TM, Nyakatura G, Apfelstedt-Sylla E et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19:260–263.

    Article  PubMed  CAS  Google Scholar 

  64. Garcia-Palomero E, Renart J, Andres-Mateos E et al. Differential expression of calcium channel subtypes in the bovine adrenal medulla. Neuroendocrinology 2001; 74:251–61.

    Article  PubMed  CAS  Google Scholar 

  65. Garcia-Palomero E, Cuchillo-Ibanez I, Garcia AG et al. Greater diversity than previously thought of chromaffin cell Ca2+ channels, derived from mRNA identification studies. FEBS Lett 2000; 481:235–239.

    Article  PubMed  CAS  Google Scholar 

  66. Ligon B, Boyd AE 3rd, Dunlap K. Class A calcium channel variants in pancreatic islets and their role in insulin secretion. J Biol Chem 1998; 273:13905–11.

    Article  PubMed  CAS  Google Scholar 

  67. Pereverzev A, Mikhna M, Vajna R et al. Disturbances in glucose-tolerance, insulin-release, and stress-induced hyperglycemia upon disruption of the Cav2.3 α1E subunit of voltage-gated Ca2+ channels. Mol Endocrinol 2002; 16:884–95.

    Article  PubMed  CAS  Google Scholar 

  68. Weiergraber M, Pereverzev A, Vajna R et al. Immunodetection of α1E voltage-gated Ca2+ channel in chromogranin-positive muscle cells of rat heart, and in distal tubules of human kidney. J Histochem Cytochem 2000; 48:807–19.

    PubMed  CAS  Google Scholar 

  69. Lievano A, Santi CM, Serrano CJ et al. T-type Ca2+ channels and α1E expression in spermatogenic cells, and their possible relevance to the sperm acrosome reaction. FEBS Lett 1996; 388:150–4.

    Article  PubMed  CAS  Google Scholar 

  70. Johnson BD, Hockerman GH, Scheuer T et al. Distinct effects of mutations in transmembrane segment IVS6 on block of L-type calcium channels by structurally similar phenylalkylamines. Mol Pharmacol 1996; 50:1388–1400.

    PubMed  CAS  Google Scholar 

  71. Gasparini S, Kasyanov AM, Pictrobon D et al. Presynaptic R-type calcium channels contribute to fast excitatory synaptic transmission in the rat hippocampus. J Neurosci 2001; 21:8715–21.

    PubMed  CAS  Google Scholar 

  72. Qian J, Noebels JL. Presynaptic Ca2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron. J Neurosci 2001; 21:3721–8.

    PubMed  CAS  Google Scholar 

  73. Westenbroek RE, Sakurai T, Elliott EM et al. Immunochemical identification and subcellular distribution of the α1A subunits of brain calcium channels. J Neurosci 1995; 15:6403–6418.

    PubMed  CAS  Google Scholar 

  74. Yokoyama CT, Westenbroek RE, Hell JW et al. Biochemical properties and subcellular distribution of the neuronal class E calcium channel α1 subunit. J Neurosci 1995; 15:6419–32.

    PubMed  CAS  Google Scholar 

  75. Newcomb R, Szoke B, Palma A et al. Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry 1998; 37:15353–62.

    Article  PubMed  CAS  Google Scholar 

  76. Tottene A, Volsen S, Pietrobon D. α1E subunits form the pore of three cerebellar R-type calcium channels with different pharmacological and permeation properties. J Neurosci 2000; 20:171–8.

    PubMed  CAS  Google Scholar 

  77. Doroshenko PA, Woppmann A, Miljanich G et al. Pharmacologically distinct presynaptic calcium channels in cerebellar excitatory and inhibitory synapses. Neuropharmacology 1997; 36:865–72.

    Article  PubMed  CAS  Google Scholar 

  78. Potier B, Dutar P, Lamour Y. Different effects of omega-conotoxin GVIA at excitatory and inhibitory synapses in rat CA1 hippocampal neurons. Brain Res 1993; 616:236–41.

    Article  PubMed  CAS  Google Scholar 

  79. Caddick SJ, Wang C, Fletcher CF et al. Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(1h)) and tottering (Cacnalatg) mouse thalami. J Neurophysiol 1999; 81:2066–74.

    PubMed  CAS  Google Scholar 

  80. Leenders AG, van den Maagdenberg AM, Lopes da Silva FH et al. Neurotransmitter release from tottering mice nerve terminals with reduced expression of mutated P-and Q-type Ca2+-channels. Eur J Neurosci 2002; 15:13–8.

    Article  PubMed  Google Scholar 

  81. Burke SP, Adams ME, Taylor CP. Inhibition of endogenous glutamate release from hippocampal tissue by Ca2+ channel toxins. Eur J Pharmacol 1993; 238:383–6.

    Article  PubMed  CAS  Google Scholar 

  82. Stephens GJ, Morris NP, Fyffe RE et al. The Cav2.1/α1A(P/Q-type) voltage-dependent calcium channel mediates inhibitory neurotransmission onto mouse cerebellar Purkinje cells. Eur J Neurosci 2001; 13:1902–12.

    Article  PubMed  CAS  Google Scholar 

  83. Poncer JC, McKinney RA, Gähwiller BH et al. Either N-or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 1997; 18:463–472.

    Article  PubMed  CAS  Google Scholar 

  84. Rosato Siri MD, Uchitel OD. Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions. J Physiol 1999; 514(Pt 2):533–40.

    Article  PubMed  Google Scholar 

  85. Fletcher CF, Tottene A, Lennon VA et al. Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity. FASEB J 2001; 15:1288–90.

    PubMed  CAS  Google Scholar 

  86. Piedras-Renteria ES, Tsien RW. Antisense oligonucleotides against alpha1E reduce R-type calcium currents in cerebellar granule cells. Proc Natl Acad Sci USA 1998; 95:7760–5.

    Article  PubMed  CAS  Google Scholar 

  87. Campbell DB, Hess EJ. L-type calcium channels contribute to the tottering mouse dystonic episodes. Mol Pharmacol 1999; 55:23–31.

    PubMed  CAS  Google Scholar 

  88. Wheeler DB, Randall A, Tsien RW. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission [see comments]. Science 1994; 264:107–111.

    Article  PubMed  CAS  Google Scholar 

  89. Urbano FJ, Piedras-Renteria ES, Jun K et al. Altered properties of quantal neurotransmitter release at endplates of mice lacking P/Q-type Ca2+ channels. Proc Nad Acad Sci USA 2003; 100:3491–3496.

    Article  CAS  Google Scholar 

  90. Piedras-Renteria ES, Pyle JL, Diehn M et al. Presynaptic homeostasis at CNS nerve terminals compensates for lack of a key Ca2+ entry pathway. Proc Natl Acad Sci USA 2004; 101:3609–3614.

    Article  PubMed  CAS  Google Scholar 

  91. Sluka KA. Blockade of N-and P/Q-type calcium channels reduces the secondary heat hyperalgesia induced by acute inflammation. J Pharmacol Exp Ther 1998; 287:232–7.

    PubMed  CAS  Google Scholar 

  92. Jain KK. An evaluation of intrathecal ziconotide for the treatment of chronic pain. Expert Opin Investig Drugs 2000; 9:2403–10.

    Article  PubMed  CAS  Google Scholar 

  93. Pietrobon D. Calcium channels and channelopathies of the central nervous system. Mol Neurobiol 2002; 25:31–50.

    Article  PubMed  CAS  Google Scholar 

  94. Jouvenceau A, Eunson LH, Spauschus A et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 2001; 358:801–7.

    Article  PubMed  CAS  Google Scholar 

  95. Wappl E, Koschak A, Poteser M et al. Functional consequences of P/Q-type Ca2+ channel Cav2.1 missense mutations associated with episodic ataxia type 2 and progressive ataxia. J Biol Chem 2002; 277:6960–6.

    Article  PubMed  CAS  Google Scholar 

  96. Maquat LE. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 2004; 5:89–99.

    Article  PubMed  CAS  Google Scholar 

  97. Hirning LD, Fox AP, McCleskey EW et al. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 1988; 239:57–60.

    Article  PubMed  CAS  Google Scholar 

  98. Saegusa H, Kurihara T, Zong S et al. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J 2001; 20:2349–56.

    Article  PubMed  CAS  Google Scholar 

  99. Hatakeyama S, Wakamori M, Ino M et al. Differential nociceptive responses in mice lacking the alpha(1B) subunit of N-type Ca2+ channels. Neuroreport 2001; 12:2423–7.

    Article  PubMed  CAS  Google Scholar 

  100. Kim C, Jun K, Lee T et al. Altered nociceptive response in mice deficient in the α1B subunit of the voltage-dependent calcium channel. Mol Cell Neurosci 2001; 18:235–45.

    Article  PubMed  CAS  Google Scholar 

  101. Atanassoff PG, Hartmannsgruber MW, Thrasher J et al. Ziconotide, a new N-type calcium channel blocker, administered intrathecally for acute postoperative pain. Reg Anesth Pain Med 2000; 25:274–8.

    Article  PubMed  CAS  Google Scholar 

  102. Penn RD, Paice JA. Adverse effects associated with the intrathecal administration of ziconotide. Pain 2000; 85:291–6.

    Article  PubMed  CAS  Google Scholar 

  103. McGuire D, Bowersox S, Fellmann JD et al. Sympatholysis after neuron-specific, N-type, voltage-sensitive calcium channel blockade: first demonstration of N-channel function in humans. J Cardiovasc Pharmacol 1997; 30:400–3.

    Article  PubMed  CAS  Google Scholar 

  104. Beuckmann CT, Sinton CM, Miyamoto N et al. N-type calcium channel α1B subunit (Cav2.2) knock-out mice display hyperactivity and vigilance state differences. J Neurosci 2003; 23:6793–6797.

    PubMed  CAS  Google Scholar 

  105. Ino M, Yoshinaga T, Wakamori M et al. Functional disorders of the sympathetic nervous system in mice lacking the α1B subunit (Cav 2.2) of N-type calcium channels. Proc Natl Acad Sci USA 2001; 98:5323–8.

    Article  PubMed  CAS  Google Scholar 

  106. Newcomb R, Abbruscato TJ, Singh T et al. Bioavailability of Ziconotide in brain: influx from blood, stability, and diffusion. Peptides 2000; 21:491–501.

    Article  PubMed  CAS  Google Scholar 

  107. Matsuda Y, Saegusa H, Zong S et al. Mice lacking Cav2.3 α1E calcium channel exhibit hyperglycemia. Biochem Biophys Res Commun 2001; 289:791–5.

    Article  PubMed  CAS  Google Scholar 

  108. Saegusa H, Kurihara T, Zong S et al. Altered pain responses in mice lacking α1E subunit of the voltage-dependent Ca2+ channel. Proc Natl Acad Sci USA 2000; 97:6132–7.

    Article  PubMed  CAS  Google Scholar 

  109. Kubota M, Murakoshi T, Saegusa H et al. Intact LTP and fear memory but impaired spatial memory in mice lacking Cav2.3 α1E channel. Biochem Biophys Res Commun 2001; 282:242–8.

    Article  PubMed  CAS  Google Scholar 

  110. Wilson SM, Toth PT, Oh SB et al. The status of voltage-dependent calcium channels in α1E knock-out mice. J Neurosci 2000; 20:8566–71.

    PubMed  CAS  Google Scholar 

  111. Lee SC, Choi S, Lee T et al. Molecular basis of R-type calcium channels in central amygdala neurons of the mouse. Proc Natl Acad Sci USA 2002; 99:3276–81.

    Article  PubMed  CAS  Google Scholar 

  112. Sochivko D, Pereverzev A, Smyth N et al. The Cav2.3 Ca2+ channel subunit contributes to R-type Ca2+ currents in murine hippocampal and neocortical neurones. J Physiol 2002; 542:699–710.

    Article  PubMed  CAS  Google Scholar 

  113. Jahnsen H, Llinas R. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 1984; 349:205–26.

    PubMed  CAS  Google Scholar 

  114. Kim D, Song I, Keum S et al. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking α1G T-type Ca2+ channels. Neuron 2001; 31:35–45.

    Article  PubMed  CAS  Google Scholar 

  115. Kim D, Park D, Choi S et al. Thalamic control of visceral nociception mediated by T-type Ca2+ channels. Science 2003; 302:117–119.

    Article  PubMed  CAS  Google Scholar 

  116. Chen CC, Lamping KG, Nuno DW et al. Abnormal coronary function in mice deficient in α1H T-type Ca2+ channels. Science 2003; 302:1416–1418.

    Article  PubMed  CAS  Google Scholar 

  117. Huguenard JR. Heterogeneity of LVA calcium currents in thalamic neurons and their functional role in burst firing. In: Tsien RW, Clofel J-P, Nargeot J, eds. Low-voltage-activated T-type calcium channels. Adis International, 1998.

    Google Scholar 

  118. Perez-Reyes E. Three for T: Molecular analysis of the low voltage-activated calcium channel family. Cell Mol Life Sci 1999; 56:660–9.

    Article  PubMed  CAS  Google Scholar 

  119. Burgess DL, Biddlecome GH, McDonough SI et al. β-subunit reshuffling modifies N-and P/Q-type Ca2+ channel subunit compositions in lethargic mouse brain. Mol Cell Neurosci 1999; 13:293–311.

    Article  PubMed  CAS  Google Scholar 

  120. Safayhi H, Haase H, Kramer U et al. L-type calcium channels in insulin-secreting cells: Biochemical characterization and phosphorylation in RINm5F cells. Mol.Endocrinol. 1997; 11:619–629.

    Article  PubMed  CAS  Google Scholar 

  121. Scott VES, De Waard M, Liu H et al. β-subunit heterogeneity in N-type calcium channels. J.Biol.Chem. 1996; 271:3207–3212.

    Article  PubMed  CAS  Google Scholar 

  122. Liu H, De Waard M, Scott VES et al. Identification of three subunits of the high affinity omega-Conotoxin MVIIC-sensitive calcium channel. J Biol Chem 1996; 271:13804–13810.

    Article  PubMed  CAS  Google Scholar 

  123. Pichler M, Cassidy TN, Reimer D et al. β-subunit heterogeneity in neuronal L-type calcium channels. J Biol Chem 1997; 272:13877–13882.

    Article  PubMed  CAS  Google Scholar 

  124. Gregg RG, Messing A, Strube C et al. Absence of the beta subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the α1 subunit and eliminates excitation-contraction coupling. Proc Natl Acad Sci USA 1996; 93:13961–6.

    Article  PubMed  CAS  Google Scholar 

  125. Ball SL, Powers PA, Shin HS et al. Role of the β2 subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest Ophthalmol Vis Sci 2002; 43:1595–603.

    PubMed  Google Scholar 

  126. Murakami M, Yamamura H, Murakami A et al. Conserved smooth muscle contractility and blood pressure increase in response to high-salt diet in mice lacking the β3 subunit of the voltage-dependent calcium channel. J Cardiovasc Pharmacol 2000; 36(Suppl 2):S69–73.

    Article  PubMed  CAS  Google Scholar 

  127. Namkung Y, Smith SM, Lee SB et al. Targeted disruption of the Ca2+ channel β3 subunit reduces N-and L-type Ca2+ channel activity and alters the voltage-dependent activation of P/Q-type Ca2+ channels in neurons. Proc Natl Acad Sci USA 1998; 95:12010–5.

    Article  PubMed  CAS  Google Scholar 

  128. Murakami M, Fleischmann B, De Felipe C et al. Pain perception in mice lacking the β3 subunit of voltage-activated calcium channels. J Biol Chem 2002; 277:40342–40351.

    Article  PubMed  CAS  Google Scholar 

  129. Cork RJ, Namkung Y, Shin HS et al. Development of the visual pathway is disrupted in mice with a targeted disruption of the calcium channel β3-subunit gene. J Comp Neurol 2001; 440:177–91.

    Article  PubMed  CAS  Google Scholar 

  130. Lo FS, Mize RR. Properties of LTD and LTP of retinocollicular synaptic transmission in the developing rat superior colliculus. Eur J Neurosci 2002; 15:1421–32.

    Article  PubMed  Google Scholar 

  131. McEnery MW, Copeland TD, Vance CL. Altered expression and assembly of N-type calcium channel α1B and β subunits in epileptic lethargic (1h/1h) mouse. J Biol Chem 1998; 273:21435–8.

    Article  PubMed  CAS  Google Scholar 

  132. Qian J, Noebels JL. Presynaptic Ca2+ influx at a mouse central synapse with Ca2+ channel subunit mutations. J Neurosci 2000; 20:163–70.

    PubMed  CAS  Google Scholar 

  133. Wakamori M, Yamazaki K, Matsunodaira H et al. Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J Biol Chem 1998; 273:34857–34867.

    Article  PubMed  CAS  Google Scholar 

  134. Escayg A, De Waard M, Lee DD et al. Coding and noncoding variation of the human calcium-channel β4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000; 66:1531–9.

    Article  PubMed  CAS  Google Scholar 

  135. Ellis SB, Williams ME, Ways NR et al. Sequence and expression of mRNAs encoding the alpha1 and α2 subunits of a DHP-sensitive calcium channel. Science 1988; 241:1661–1664.

    Article  PubMed  CAS  Google Scholar 

  136. Barclay J, Balaguero N, Mione M et al. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J Neurosci 2001; 21:6095–104.

    PubMed  CAS  Google Scholar 

  137. Marais E, Klugbauer N, Hofmann F. Calcium channel α2δ subunits-structure and Gabapentin binding. Mol Pharmacol 2001; 59:1243–8.

    PubMed  CAS  Google Scholar 

  138. Gong HC, Hang J, Kohler W et al. Tissue-specific expression and gabapentin-binding properties of calcium channel α2δ subunit subtypes. J Membr Biol 2001; 184:35–43.

    Article  PubMed  CAS  Google Scholar 

  139. Qin N, Yagel S, Momplaisir ML et al. Molecular cloning and characterization of the human voltage-gated calcium channel α2δ4 subunit. Mol Pharmacol 2002; 62:485–96.

    Article  PubMed  CAS  Google Scholar 

  140. Martin DJ, McClelland D, Herd MB et al. Gabapentin-mediated inhibition of voltage-activated Ca2+ channel currents in cultured sensory neurones is dependent on culture conditions and channel subunit expression. Neuropharmacology 2002; 42:353–66.

    Article  PubMed  CAS  Google Scholar 

  141. Schumacher TB, Beck H, Steinhauser C et al. Effects of phenytoin, carbamazepine, and gabapentin on calcium channels in hippocampal granule cells from patients with temporal lobe epilepsy. Epilepsia 1998; 39:355–63.

    Article  PubMed  CAS  Google Scholar 

  142. Field MJ, Hughes J, Singh L. Further evidence for the role of the α2δ subunit of voltage dependent calcium channels in models of neuropathic pain. Br J Pharmacol 2000; 131:282–6.

    Article  PubMed  CAS  Google Scholar 

  143. Brodbeck J, Davies A, Courtney JM et al. The ducky mutation in Cacna2d2 results in altered Purkinje cell morphology and is associated with the expression of a truncated α2δ2 protein with abnormal function. J Biol Chem 2002; 277:7684–93.

    Article  PubMed  CAS  Google Scholar 

  144. Burgess DL, Gefrides LA, Foreman PJ. A cluster of three novel Ca2+ channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subunit gene family. Genomics 2001; 71:339–50.

    Article  PubMed  CAS  Google Scholar 

  145. Moss FJ, Viard P, Davies A et al. The novel product of a five-exon stargazin-related gene abolishes Cav2.2 calcium channel expression. EMBO J 2002; 21:1514–23.

    Article  PubMed  CAS  Google Scholar 

  146. Freise D, Held B, Wissenbach U et al. Absence of the γ subunit of the skeletal muscle dihydropyridine receptor increases L-type Ca2+ currents and alters channel inactivation properties. J Biol Chem 2000; 275:14476–81.

    Article  PubMed  CAS  Google Scholar 

  147. Held B, Freise D, Freichel M et al. Skeletal muscle L-type Ca2+ current modulation in γ1-deficient and wildtype murine myotubes by the γ1 subunit and cAMP. J Physiol 2002; 539:459–68.

    Article  PubMed  CAS  Google Scholar 

  148. Ursu D, Sebille S, Dietze B et al. Excitation-contraction coupling in skeletal muscle of a mouse lacking the dihydropyridine receptor subunit γ1. J Physiol 2001; 533:367–77.

    Article  PubMed  CAS  Google Scholar 

  149. Letts VA, Felix R, Biddlecome GH et al. The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit. Nat Genet 1998; 19:340–347.

    Article  PubMed  CAS  Google Scholar 

  150. Kang MG, Chen CC, Felix R et al. Biochemical and biophysical evidence for γ2 subunit association with neuronal voltage-activated Ca2+ channels. J Biol Chem 2001; 276:32917–24.

    Article  PubMed  CAS  Google Scholar 

  151. Klugbauer N, Dai S, Specht V et al. A family of γ-like calcium channel subunits. FEBS Lett 2000; 470:189–97.

    Article  PubMed  CAS  Google Scholar 

  152. Chen L, Chetkovich DM, Petralia RS et al. Stargazing regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 2000; 408:936–43.

    Article  PubMed  CAS  Google Scholar 

  153. Ophoff RA, Terwindt GM, Vergouwe MN et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the calcium channels gene CACNL1A4. Cell 1996; 87:543–552.

    Article  PubMed  CAS  Google Scholar 

  154. Kraus RL, Sinnegger MJ, Glossmann H et al. Familial hemiplegic migraine mutations change α1A calcium channel kinetics. J Biol Chem 1998; 273:5586–5590.

    Article  PubMed  CAS  Google Scholar 

  155. Sakata Y, Saegusa H, Zong S et al. Cav2.3 α1E Ca2+ channel participates in the control of sperm function. FEBS Lett 2002; 516:229–33.

    Article  PubMed  CAS  Google Scholar 

  156. Matsuda Y, Saegusa H, Zong S et al. Mice lacking Ca(v)2.3 α1E calcium channel exhibit hyperglycemia. Biochem Biophys Res Commun 2001; 289:791–5.

    Article  PubMed  CAS  Google Scholar 

  157. Van Den Maagdenberg AM, Pietrobon D, Pizzorusso T et al. A cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 2004; 41:701–710.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Striessnig, J., Koschak, A. (2005). Exploring the Function and Pharmacotherapeutic of Potential Voltage-Gated Ca2+ Channels with Gene-Knockout Models. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_23

Download citation

Publish with us

Policies and ethics