Skip to main content

Establishing Photocatalytic Kinetic Rate Equations: Basic Principles and Parameters

  • Chapter
Photocatalytic Reaction Engineering

Abstract

Heterogeneous photocatalysis is a promising new alternative method for the removal of organic pollutants in water (Carey, 1976). The degradation of organic pollutants in water, using irradiated dispersions of titanium dioxide, is a growing area of both fundamental and applied research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Ekabi, H., and Serpone, N., 1993, TiO2 advanced photo-oxidation technology: effect of electron acceptors, in: Photocatalytic purification and treatment of water and air, 011is, D., and Al-Ekabi, H., Elsevier, New York, pp. 321–335.

    Google Scholar 

  • Carey, J. H., Lawrence, J., and Tosine, H. M., 1976, Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions, Bull. Environ. Contam. Toxicol, 16: 697–701.

    Article  CAS  Google Scholar 

  • Draper, R. B., and Fox, M. A., 1990, Titanium dioxide photosensitized reactions studied by diffuse reflectance flash photolysis in: Aqueous suspensions of TiO2 powder, Langmuir, 6:1396-1402.

    Google Scholar 

  • Hoffmann, M. R., Martin, S. T., and Choi, W., 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95: 69–96.

    Article  CAS  Google Scholar 

  • Legrini, O., Oliveros, E., and Braun, A. M., 1993, Photocatalytic processes for water treatment, Chem. Rev., 93: 671–698.

    Article  CAS  Google Scholar 

  • Linsebigler, A., Lu, G., and Yates, J. T. Jr., 1995, Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results, Chem. Rev., 95: 735–758.

    Article  CAS  Google Scholar 

  • Mills, G., and Hoffmann, M. R., 1993, Photocatalytic degradation of pentachlorophenol on TiO2 particles: Identification of intermediates and mechanism of reaction, Environ. Sei. Tech., 27: 1681–1689.

    Article  CAS  Google Scholar 

  • Okamoto, K., Yamamoto, Y., Tanaka, H., and Itaya, A., 1985, Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 powder. Bull. Chem. Soc. Japan, 58: 2023–2028.

    Article  CAS  Google Scholar 

  • O11is, D. F., 1991, Solar assisted photocatalysis for water purification. issues, data, questions, in: Photochemical conversion and storage of solar energy, Pelizzetti, E., Schiavello, M., eds., Kluwer Academic, Dordrecht, The Netherlands, pp. 593–622.

    Google Scholar 

  • Pasqualli, M., Santarelli, F., Porter, J. F., and Yue, P. L., 1996, Radiative transfer in photocatalytic systems, AIChE J., 42: 532–537.

    Google Scholar 

  • Pelizzetti, E., Minero, C., and Pramauro, E., 1993, photocatalytic processes for destruction of organic water contaminants, in: Chemical reactor technology for environmentally safe reactors and products. de Lasa, H. I., Dogu, G., and Ravella, A., Kluwer Academic Publishers, Netherlands, pp. 577–608.

    Google Scholar 

  • Salaices, M., Serrano, B., and de Lasa, H., 2001, Photocatalytic conversion of organic pollutants. Extinction coefficients and quantum efficiencies, Ind. Eng. Chem. Res., 40: 5455–5464.

    CAS  Google Scholar 

  • Salaices, M., Serrano, B., and de Lasa H., 2002, Experimental evaluation of photon absorption in an aqueous TiO2 slurry reactor, Chem. Eng. 1, 90: 219–229.

    CAS  Google Scholar 

  • Salaices, M., Serrano, B., and de Lasa H., 2004, Photocatalytic Conversion of phenolic compound in slurry reactors, Chem. Eng. Sei., 59: 3–15.

    Article  CAS  Google Scholar 

  • Terzian, R., Serpone, N., and Minero, C., 1991, Photocatalyzed mineralization of cresols in aqueous with irradiated titania, J. Catal., 128: 352–365.

    Article  CAS  Google Scholar 

  • Trillas, M., Pujol, M. and Domenech, X., 1992, Phenol photodegradation over titanium dioxide. J. Chem. Tech. Biotech., 55 (1): 85–90.

    Article  CAS  Google Scholar 

  • Trillas, M., Pujol, M. and Domenech, X., 1996, Photocatalyzed degradation of phenol, 2,4-dichlorophenol, phenoxyacetic acid and 2,4-dichlorophenoxyacetic acid over supported TiO2 in a flow system. J. Chem. Tech. Biotech., 67 (3): 237–242.

    Article  CAS  Google Scholar 

  • Turchi, C. S., O11is, D. E. 1990, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, J. Catal., 122: 178–192.

    Article  CAS  Google Scholar 

  • Wei, Chang., Lin, W. Y., and Zainal, Z., 1994, Bactericidal activity of TiO2 photocatalyst in aqueous media: Toward a solar-assisted water disinfections system. Environ. Sei. Techn., 28: 934–938.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Lasa, H., Serrano, B., Salaices, M. (2005). Establishing Photocatalytic Kinetic Rate Equations: Basic Principles and Parameters. In: Photocatalytic Reaction Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-387-27591-6_1

Download citation

Publish with us

Policies and ethics