Skip to main content

17.5 Conclusions

In this chapter we focussed on the potential of microoptically integrated systems for security applications. Adopting the concept of planar-integrated free-space optics we demonstrated a variety of systems architectures of optical correlators which are usefull for this area of applications. The experiments with microoptical systems clearly show that optical systems for applications in homeland security can be miniaturized and integrated to extremely compact and rugged devices with state-of-the-art microoptics and lithographic technology. Especially the planar interfaces of PIFSO offer the chance for hybrid integration of a variety of devices such as opto-electronics or micromechanics. Thus, in combination with further technological improvement, the door seems to be open for real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sinzinger S, Jahns J. (2003). Microoptics, 2nd edn. Wiley-VCH, Weinheim (2003).

    Book  Google Scholar 

  2. Iga K, Oikawa M, Misawa S, Banno J, and Kokubun Y. (1982). Appl. Opt., 21:3456.

    Article  ADS  Google Scholar 

  3. Jahns J and Huang A (1989). Appl. Opt., 28:1602.

    Article  ADS  Google Scholar 

  4. Wu MC (1997). Proc. IEEE 85:1833.

    Article  Google Scholar 

  5. Gruber M, ElJoudi E, Sinzinger S, and Jahns J (2001). Appl. Opt. 40:2902.

    Article  ADS  Google Scholar 

  6. Jahns J, Lee YH, Burrus CA, Jewell JL (1992). Appl. Opt., 31:592.

    Article  ADS  Google Scholar 

  7. Acklin B and Jahns J (1994). Appl. Opt., 33:1391.

    Article  ADS  Google Scholar 

  8. Gimkiewicz Ch. and Jahns J (1997). Proc. SPIE, 3226:56.

    Article  ADS  Google Scholar 

  9. Gruber M and Jahns J (2004). Planar-integrated free-space optics: From components to systems. in: Microoptics: From Technology to Applications, Jahns J, Brenner K.-H. Springer, New York.

    Google Scholar 

  10. Testorf M, Jahns J, Khilo NA and Goncharenko AM (1996). Opt. Comm. eds. 129:167.

    Article  ADS  Google Scholar 

  11. Testorf M and Jahns J (1997). J. Opt. Soc. Am. A., 14:1569.

    Article  ADS  Google Scholar 

  12. Lohmann AW (1991). Opt. Comm., 86:365.

    Article  ADS  Google Scholar 

  13. Jahns J, Sauer F, Tell B, Brown-Goebeler KF, Feldblum AY, Nijander CR and Townsend WP (1994). Opt. Comm., 109:328.

    Article  ADS  Google Scholar 

  14. Sinzinger S and Jahns J (1997). Appl. Opt., 36:4729.

    Article  ADS  Google Scholar 

  15. Jahns J and Daschner W (1990). Opt. Comm., 79:407.

    Article  ADS  Google Scholar 

  16. Hutley MC, Savander P and Schrader M (1992). Pure Appl. Opt., 1:337.

    Article  ADS  Google Scholar 

  17. McCormick FB (1993). Free-space optical interconnection systems. in: Photonics in Switching, vol. II, ed. Midwinter JE Academic, Boston.

    Google Scholar 

  18. Jahns J and Acklin B (1993). Opt. Lett., 18:1594.

    Article  ADS  Google Scholar 

  19. Eckert W, Arrizón V, Sinzinger S and Jahns J (2000). Opt. Comm., 186:83.

    Article  ADS  Google Scholar 

  20. Vander Lugt AB (1992). Optical Signal Processing. Wiley, New York.

    Google Scholar 

  21. Weiner AW and Salehi JA (1993). Optical Code-Division Multiple Access. in: Photonics in Switching II, ed. Midwinter JE Academ, Boston.

    Google Scholar 

  22. Gosh AK, Lapis MB and Aossey D (1991). Electron. Lett., 27:871.

    Article  Google Scholar 

  23. Reinhorn S, Amitai Y, and Friesem AA (1997). Opt. Lett., 22:925.

    Article  ADS  Google Scholar 

  24. Song SH, Jeong J.-S, Park S and Lee E.-H (1997). Opt. Comm., 143:287.

    Article  ADS  Google Scholar 

  25. Eckert W, Arrizón V, Sinzinger S and Jahns J (2000). Appl. Opt., 39:759.

    Article  ADS  Google Scholar 

  26. Gerchberg RW and Saxton WO (1972). Optik, 35:237.

    Google Scholar 

  27. Arrizón V and Testorf M (2000). J. Opt. Soc. Am. A., 17:2157.

    Article  ADS  Google Scholar 

  28. van Renesse RL (1994). Optical document security. Artech House, Norwood.

    Google Scholar 

  29. Sinzinger S (2002). Opt. Comm., 209:69.

    Article  ADS  Google Scholar 

  30. Javidi B (1997). Phys. Today, 50(3):27.

    Article  Google Scholar 

  31. Javidi B and Horner J (1994). Opt. Eng., 33:1752.

    Article  ADS  Google Scholar 

  32. Refregier P and Javidi B (1995). Opt. Lett., 20:767.

    Article  ADS  Google Scholar 

  33. Towghi N, Javidi B and Lou Z (1999). J. Opt. Soc. Am. A., 16:1915.

    Article  ADS  Google Scholar 

  34. Javidi B and Nomura T (2000). Opt. Lett., 25:28.

    Article  ADS  Google Scholar 

  35. Glückstad J (1998). Phase contrast scrambling. Int. PCT pat. WO 002339A1.

    Google Scholar 

  36. Mogensen PC and Glückstad J (2000). Opt. Commun., 173:177.

    Article  ADS  Google Scholar 

  37. Mogensen PC, Eriksen RL and Glückstad J (2001). J. Optics A., 3:10.

    ADS  Google Scholar 

  38. Eriksen RL, Mogensen PC and Glückstad J (2001). Opt. Commun., 187:325.

    Article  ADS  Google Scholar 

  39. Glückstad J (1999). Image decrypting common path interferometer. in: Optical Pattern recognition X, eds. Casasent DP, Chao T. eds. (Proc. SPIE, 3715:1999).

    Google Scholar 

  40. Mogensen PC and Glückstad J (2000). Opt. Lett., 25:566.

    Article  ADS  Google Scholar 

  41. Mogensen PC and Glückstad J (2001). Appl. Opt., 40:1226.

    Article  ADS  Google Scholar 

  42. Zernike F (1955). Science, 121:345.

    Article  ADS  Google Scholar 

  43. Glückstad J (1996). Opt. Commun., 130:225.

    Article  ADS  Google Scholar 

  44. Glückstad J (2000). Phase contrast imaging. U.S. patent 6,011,874.

    Google Scholar 

  45. Glückstad J and Mogensen PC (2001). Appl. Opt., 40:268.

    Article  ADS  Google Scholar 

  46. Daria V, Glückstad J, Mogensen PC, Eriksen RL, and Sinzinger S (2002). Opt. Lett., 27:945.

    Article  ADS  Google Scholar 

  47. Daria V, Eriksen RL, Sinzinger S and Glückstad J (2003). J. Opt. A: Pure Appl. Opt., 5:211.

    Article  ADS  Google Scholar 

  48. Glückstad J, Daria VR and Rodrigo PJ (2003). Opt. Lett., 28:1075.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Sinzinger, S., Jahns, J., Daria, V.R., Glückstad, J. (2006). Planar Microoptical Systems for Correlation and Security Applications. In: Javidi, B. (eds) Optical Imaging Sensors and Systems for Homeland Security Applications. Advanced Sciences and Technologies for Security Applications, vol 2. Springer, New York, NY. https://doi.org/10.1007/0-387-28001-4_17

Download citation

Publish with us

Policies and ethics