Skip to main content

Programmed Cell Death

  • Chapter
Developmental Neurobiology

Summary

Programmed cell death research has had an arguably unparalleled impact on the field of developmental neurobiology. For over one hundred years, investigations of neuronal cell death have challenged our assumptions about nervous system development and its cellular and molecular regulation. Current studies on programmed cell death, including investigations of neural stem cell death, hold tremendous promise for elucidating the complex processes involved in normal mammalian nervous system development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allsopp, T.E., Wyatt, S., Paterson, H.F., and Davies, A.M., 1993, The protooncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis, Cell 73:295–307.

    Article  CAS  PubMed  Google Scholar 

  • Barres, B.A., Hart, I.K., Coles, H.S.R., Burne, J.F., Voyvodic, J.T., Richardson, W.D. et al., 1992, Cell death and control of cell survival in the oligodendrocyte lineage, Cell 70:31–46.

    Article  CAS  PubMed  Google Scholar 

  • Barres, B.A., Jacobson, M.D., Schmid, R., Sendtner, M., and Raff, M.C., 1993, Does oligodendrocyte survival depend on axons? Curr. Biol. 3:489–497.

    Article  CAS  PubMed  Google Scholar 

  • Beard, J., 1896, The history of a transient nervous apparatus in certain Ichthyopsida. An account of the development and degeneration of ganglion-cells and nerve fibres, Zool. Jahrbüchér Abt. Morphol. 9:1–106.

    Google Scholar 

  • Bibel, M. and Barde, Y.-A., 2000, Neurotrophins: Key regulators of cell fate and cell shape in the vertebrate nervous system, Genes Dev. 14:2919–2937.

    Article  CAS  PubMed  Google Scholar 

  • Blaschke, A.J., Staley, K., and Chun, J., 1996, Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex, Development 122:1165–1174.

    CAS  PubMed  Google Scholar 

  • Blaschke, A.J., Weiner, J.A., and Chun, J., 1998, Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system, J. Comp. Neurol. 396:39–50.

    Article  CAS  PubMed  Google Scholar 

  • Boise, L.H., González-García, M., Postema, C.E., Ding, L., Linsten, T., Turka, L.A. et al., 1993, bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death, Cell 74:597–608.

    Article  CAS  PubMed  Google Scholar 

  • Bouillet, P., Cory, S., Zhang, L.-C., Strasser, A., and Adams, J.M., 2001, Degenerative disorders caused by Bcl-2 deficiency prevented by loss of its BH3-only antagonist Bim, Dev. Cell 1:645–653.

    Article  CAS  PubMed  Google Scholar 

  • Burek, M.J. and Oppenheim, R.W., 1996, Programmed cell death in the developing nervous system, Brain Pathol. 6:427–446.

    CAS  PubMed  Google Scholar 

  • Burne, J.F., Staple, J.K., and Raff, M.C., 1996, Glial cells are increased proportionally in transgenic optic nerves with increased numbers of axons, J. Neurosci. 16:2064–2073.

    CAS  PubMed  Google Scholar 

  • Bursch, W., 2001, The autophagosomal-lysosomal compartment in programmed cell death, Cell Death Differ. 8:569–581.

    Article  CAS  PubMed  Google Scholar 

  • Cecconi, F., Alvarez-Bolado, G., Meyer, B.I., Roth, K.A., and Gruss, P., 1998, Apaf1 (CED-4 Homolog) regulates programmed cell death in mammalian development, Cell 94:727–737.

    Article  CAS  PubMed  Google Scholar 

  • Chai, J., Shiozaki, E., Srinivasula, S.M., Wu, Q., Dataa, P., Alnemri, E.S. et al., 2001, Structural basis of Caspase-7 inhibition by XIAP, Cell 104:769–780.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D.F., Schneider, G.E., Martinou, J.-C., and Tonegawa, S., 1997, Bcl-2 promotes regeneration of severed axons in mammalian CNS, Nature 385:434–439.

    CAS  PubMed  Google Scholar 

  • Cheng, E.H. Y., Wei, M.C., Weiler, S., Flavell, R.A., Mak, T.W., Lindsten, T. et al., 2001, BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis, Mol. Cell 8:705–711.

    Article  CAS  PubMed  Google Scholar 

  • Chenn, A. and Walsh, C.A., 2002, Regulation of cerebral cortical size by control of cell cycle exit in neural precursors, Science 297:365–369.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chi, S., Kitanake, C., Noguchi, K., Mochizuki, T., Nagashima, Y., Shirouzu, M. et al., 1999, Oncogenic ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells, Oncogene 18:2281–2290.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J., 2000, Cell death, DNA breaks and possible rearrangements: An alternative view, Trends Neurosci. 23:407–408.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J. and Schatz, D.G., 1999, Rearranging views on neurogenesis: Neuronal death in the absence of DNA end-joining proteins, Neuron 22:7–10.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, P.G.H., 1990, Developmental cell death: Morphological diversity and multiple mechanisms, Anat. Embryol. 181:195–213.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, W.M., Fawcett, J.W., O’Leary, D.D.M., and Stanfield, B.B., 1984, Regressive events in neurogenesis, Science 225:1258–1265.

    CAS  PubMed  ADS  Google Scholar 

  • D’Mello, S.R., Kuan, C.-Y., Flavell, R.A., and Rakic, P., 2000, Caspase-3 is required for apoptosis-associated DNA fragmentation but not for cell death in neurons deprived of potassium, J. Neurosci. Res. 59:24–31.

    CAS  PubMed  Google Scholar 

  • D’Sa-Eipper, C., Leonard, J.R., Putcha, G., Zheng, T.S., Flavell, R.A., Rakic, P. et al., 2001, DNA damage-induced neural precursor cell apoptosis requires p53 and caspase-9 but neither Bax nor caspase-3, Development 128:137–146.

    CAS  PubMed  Google Scholar 

  • de la Rosa, E.J. and de Pablo, F., 2000, Cell death in early neural development: Beyond the neurotrophic theory, Trends Neurosci. 23:454–458.

    PubMed  Google Scholar 

  • Deckwerth, T.L., Elliott, J.L., Knudson, C.M., Johnson, Jr., E.M., Snider, W.D., and Korsmeyer, S.J., 1996, Bax is required for neuronal death after trophic factor deprivation and during development, Neuron 17: 401–411.

    Article  CAS  PubMed  Google Scholar 

  • Deiss, L.P., Galinka, H., Berissi, H., Cohen, O., and Kimchi, A., 1996, Cathepsin D protease mediates programmed cell death induced by interferon-γ, Fas/APO-1 and TNF-α, EMBO J. 15:3861–3870.

    CAS  PubMed  Google Scholar 

  • Deveraux, Q.L. and Reed, J.C., 1999, IAP family proteins—suppressors of apoptosis, Genes Dev. 13:239–252.

    CAS  PubMed  Google Scholar 

  • Di Cunto, F., Imarisio, S., Hirsch, E., Broccoli, V., Bulfone, A., Migheli, A. et al., 2000, Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis, Neuron 28:115–127.

    PubMed  Google Scholar 

  • Dunn, Jr., W.A., 1994, Autophagy and related mechanisms of lysosome-mediated protein degradation, Trends Cell Biol. 4:139–143.

    Article  CAS  PubMed  Google Scholar 

  • Ernst, M., 1926, Ãœber Untergang von Zellen während der normalen Entwicklung bei Wirbeltieren, Z. Anat. Entwicklungsgesch 79:228–262.

    Google Scholar 

  • Ferrer, I., Soriano, E., Del Rio, A., Alcántara, S., and Auladell, C., 1992, Cell death and removal in the cerebral cortex during development, Progress in Neurobiol. 39:1–43.

    CAS  Google Scholar 

  • Frank, K.M., Sekiguchi, J.M., Seidl, K.J., Swat, W., Rathbun, G.A., Cheng H.-L. et al., 1998, Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV, Nature 396:173–177.

    CAS  PubMed  ADS  Google Scholar 

  • Frank, K.M., Sharpless, N.E., Gao, Y., Sekiguchi, J.M., Ferguson, D.O., Zhu, C. et al., 2000, DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway, Mol. Cell 5:993–1002.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y., Ferguson, D.O., Xie, W., Manis, J.P., Sekiguchi, J., Frank, K.M. et al., 2000, Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development, Nature 404:897–900.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gao, Y., Sun, Y., Frank, K.M., Dikkes, P., Fujiwara, Y., Seidl, K.J. et al., 1998, A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis, Cell 95:891–902.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, I., Marinou, I., Tsujimoto, Y., and Martinou, J.-C., 1992, Prevention of programmed cell death of sympathetic neurons by the bcl-2 protooncogene, Science 258:302–304.

    CAS  PubMed  ADS  Google Scholar 

  • Gilmore, E.C., Nowakowski, R.S., Caviness, Jr., V.S., and Herrup, K., 2000, Cell birth, cell death, cell diversity and DNA breaks: How do they all fit together? Trends Neurosci. 23:100–105.

    CAS  PubMed  Google Scholar 

  • Glücksmann, A., 1951, Cell deaths in normal vertebrate ontogeny, Bio. Rev. 26:59–86.

    Google Scholar 

  • González-García, M., Garcia, I., Ding, L., O’Shea, S., Boise, L.H., Thompson, C.B. et al., 1995, bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death, Proc. Natl. Acad. Sci. USA 92:4304–4308.

    PubMed  ADS  Google Scholar 

  • González-García, M., Thompson, C.B., Ding, L., Duan, L., Boise, L.H., and Nuñez, G., 1994, bcl-x L is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria, Development 120:3033–3042.

    PubMed  Google Scholar 

  • Götz, R., Karch, C., Digby, M.R., Troppmair, J., Rapp, U.R., and Sendtner, M., 2000, The neuronal apoptosis inhibitory protein suppresses neuronal differentiation and apoptosis in PC12 cells, Hum. Mol. Genet. 9:2479–2489.

    PubMed  Google Scholar 

  • Häcker, G., 2000, The morphology of apoptosis, Cell Tissue Res. 301:5–17.

    PubMed  Google Scholar 

  • Hakem, R., Hakem, A., Duncan, G.S., Henderson, J.T., Woo, M., Soengas, M.S. et al., 1998, Differential requirement for caspase-9 in apoptotic pathways in vivo, Cell 94:339–352.

    Article  CAS  PubMed  Google Scholar 

  • Hamburger, V., 1992, History of the discovery of neuronal death in embryos, J. Neurobiol. 23:1116–1123.

    Article  CAS  PubMed  Google Scholar 

  • Harlin, H., Reffey, S.B., Duckett, C.S., Lindsten, T., and Thompson, C.B., 2001, Characterization of XIAP-deficient mice, Mol. Cell. Biol. 21:3604–3608.

    Article  CAS  PubMed  Google Scholar 

  • Holcik, M., Thompson, C.B., Yaraghi, Z., Lefebvre, C.A., MacKenzie, A.E., and Korneluk, R.G., 2000, The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice display increased vulnerability to kainic acid-induced injury, Proc. Natl. Acad. Sci. USA 97:2286–2290.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Honarpour, N., Tabuchi, K., Stark, J.M., Hammer, R.E., Südhof, T.C., Parada, L.F. et al., 2001, Embryonic neuronal death due to neurotrophin and neurotransmitter deprivation occurs independent of Apaf-1, Neuroscience 106:263–274.

    Article  CAS  PubMed  Google Scholar 

  • Horvitz, H.R., 1999, Genetic control of programmed cell death in the nematode Caenorhabditis elegans, Cancer Res. 59:1701s–1706s.

    CAS  PubMed  Google Scholar 

  • Huang, Y., Park, Y.C., Rich, R.L., Segal, D., Myszka, D.G., and Wu, H., 2001, Structural basis of caspase inhibition by XIAP: Differential roles of the Linker versus the BIR domain, Cell 104:781–790.

    CAS  PubMed  Google Scholar 

  • Jacks, T., Fazeli, A., Schmitt, E.M., Bronson, R.T., Goodell, M.A., and Weinberg, R.A., 1992, Effects of an Rb mutation in the mouse, Nature 359:295–300.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Jacobson, M., 1991, Developmental Neurobiology, 3rd edn, Plenum Press, New York.

    Google Scholar 

  • Jacobson, M.D., Weil, M., and Raff, M.C., 1997, Programmed cell death in animal development, Cell 88:347–354.

    Article  CAS  PubMed  Google Scholar 

  • Joza, N., Kroemer, G., and Penninger, J.M., 2002, Genetic analysis of the mammalian cell death machinery, Trends Genet. 18:142–149.

    Article  CAS  PubMed  Google Scholar 

  • Kerr, J.F.R., Wyllie, A.H., and Currie, A.R., 1972, Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer 26:239–257.

    CAS  PubMed  Google Scholar 

  • Klocke, B.J., Latham, C.B., C. D’Sa, and Roth, K.A., 2002, p53 deficiency fails to prevent increased programmed cell death in the Bcl-XL-deficient nervous system, Cell Death Differ 9:1063–1068.

    Article  CAS  PubMed  Google Scholar 

  • Knudson, C.M., Tung, K.S.K., Troutellotte, W.G., Brown, G.A.J., and Korsmeyer, S.J., 1995, Bax-deficient mice with lymphoid hyperplasia and male germ cell death, Science 270:96–99.

    CAS  PubMed  ADS  Google Scholar 

  • Korsmeyer, S.J. 1999, BCL-2 gene family and the regulation of programmed cell death, Cancer Res. 59:1693s–1700s.

    CAS  PubMed  Google Scholar 

  • Krajewski, S., Krajewska, M., Shabaik, A., Miyashita, T., Wang, H.-G., and Reed, J.C., 1994, Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2, Am. J. Path. 145:1323–1328.

    CAS  PubMed  Google Scholar 

  • Krajewski, S., Tanaka, S., Takayama, S., Schibler, M.J., Fenton, W., and Reed, J.C., 1993, Investigations of the subcellular distribution of the Bcl-2 oncoprotein residence in the nuclear envelope, endoplasmic reticulum, and other mitochondrial membranes, Cancer Res. 53:4701–4714.

    CAS  PubMed  Google Scholar 

  • Krueger, B.K., Burne, J.F., and Raff, M.C., 1995, Evidence for large-scale astrocyte death in the developing cerebellum, J. Neurosci. 15:3366–3374.

    CAS  PubMed  Google Scholar 

  • Kuan, C.-Y., Roth, K.A., Flavell, R.A., and Rakic, P., 2000, Mechanism of programmed cell death in the developing brain, Trends Neurosci. 23:287–293.

    Article  Google Scholar 

  • Kügler, S., Straten, G., Kreppel, F., Isenmann, S., Liston, P., and Bähr, M., 2000, The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo, Cell Death Differ. 7:815–824.

    Article  PubMed  CAS  Google Scholar 

  • Kuida, K., Haydar, T.F., Kuan, C.-Y., Gu, Y., Taya, C., Karasuyama, H. et al., 1998, Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase-9, Cell 94:325–337.

    Article  CAS  PubMed  Google Scholar 

  • Kuida, K., Zheng, T.S., Na, S., Kuan, C.-Y., Yang, D., Karasuyama, H. et al., 1996, Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice, Nature 384:368–372.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lee, C.-Y. and Baehrecke, E.H., 2001, Steroid regulation of autophagic programmed cell death during development, Development 128:1443–1455.

    CAS  PubMed  Google Scholar 

  • Lee, E.Y.H.P., Chang, C.-Y., Hu, N., Wang, Y.-C.J., Lai, C.-C., Herrup, K. et al., 1992, Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis, Nature 359:288–294.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Leonard, J.R., D’Sa, C., Cahn, R., Korsmeyer, S., and Roth, K.A., 2001, Bid regulation of neuronal apoptosis, Dev. Brain Res. 128:187–190.

    Article  CAS  Google Scholar 

  • Leonard, J.R., Klocke, B.J., D’Sa, C., Flavell, R.A., and Roth, K.A., 2002, Strain-dependent neurodevelopmental abnormalities in caspase-3-deficient mice, J. Neuropathol. Exp. Neurol. 61:673–677.

    PubMed  Google Scholar 

  • Liang, X.H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H. et al., 1999, Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature 402:672–676.

    CAS  PubMed  ADS  Google Scholar 

  • Lindsten, T., Ross, A.J., King, A., Zong, W.-X., Rathmell, J.C., Shiels, H.A. et al., 2000, The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues, Mol. Cell 6:1389–1399.

    Article  CAS  PubMed  Google Scholar 

  • Liston, P., Fong, W.G., Kelly, N.L., Toji, S., Miyazaki, T., Conte, D. et al., 2001, Identification of XAF1 as an antagonist of XIAP anti-caspase activity, Cell Biol. Nat. 3:128–133.

    CAS  Google Scholar 

  • Lomaga, M.A., Henderson, J.T., Elia, A.J., Robertson, J., Noyce, R.S., Yeh, W.-C. et al., 2000, Tumor necrosis factor receptor-associated factor 6 (TRAF6) deficiency results in exencephaly and is required for apoptosis within the developing DNS, J. Neurosci. 20:7384–7393.

    CAS  PubMed  Google Scholar 

  • Macleod, K.F., Hu, Y., and Jacks, T., 1996, Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system, EMBO J. 15:6178–6188.

    CAS  PubMed  Google Scholar 

  • Martinou, J.-C., Dubois-Dauphin, M., Staple, J.K., Rodriguez, I., Frankowski, H., Missotten, M. et al., 1994, Overexpression of Bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia, Neuron 13:1017–1030.

    Article  CAS  PubMed  Google Scholar 

  • Mercer, E.A., Korhonen, L., Skoglösa, Y., Olsson, P.-A., Kukkonen, J.P., and Linkholm, D., 2000, NAIP interacts with hippocalcin and protects neurons against calcium-induced cell death through caspase-3-dependent and-independent pathways, EMBO J. 19:3597–3607.

    Article  CAS  PubMed  Google Scholar 

  • Merry, D.E. and Korsmeyer, S.J., 1997, Bcl-2 gene family in the nervous system, Annu. Rev. Neurosci. 20:245–267.

    Article  CAS  PubMed  Google Scholar 

  • Merry, D.E., Veis, D.J., Hickey, W.F., and Korsmeyer, S.J., 1994, bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS, Development 120:301–311.

    CAS  PubMed  Google Scholar 

  • Michaelidis, T.M., Sendtner, M., Cooper, J.D., Airaksinen, M.S., Holtmann, B., Meyer, M. et al., 1996, Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development, Neuron 17:75–89.

    Article  CAS  PubMed  Google Scholar 

  • Morgenbesser, S.D., Williams, B.O., Jacks, T., and DePinho, R.A., 1994, p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens, Nature 371:72–74.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Motoyama, N., Wang, F., Roth, K.A., Sawa, H., Nakayama, K.-I., Nakayama, K. et al., 1995, Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice, Science 267:1506–1510.

    CAS  PubMed  ADS  Google Scholar 

  • Nakayama, K., Nakayama, K.-I., Negishi, I., Kuida, K., Sawa, H., and Loh, D.Y., 1994, Targeted disruption of Bcl-2 αβ in mice: Occurrence of gray hair, polycystic kidney disease, and lymphocytopenia, Proc. Natl. Acad. Sci. USA 91:3700–3704.

    CAS  PubMed  ADS  Google Scholar 

  • Nicholson, D.W., 1999, Caspase structure, proteolytic substrates, and function during apoptotic cell death, Cell Death Differ. 6:1028–1042.

    Article  CAS  PubMed  Google Scholar 

  • Nicotera, P., 2000, Caspase requirement for neuronal apoptosis and neurodegeneration, IUBMB Life 49:421–425.

    CAS  PubMed  Google Scholar 

  • Oltvai, Z.N., Milliman, C.T., and Korsmeyer, S.J., 1993, Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death, Cell 74:609–619.

    CAS  PubMed  Google Scholar 

  • Oppenheim, R.W., 1991, Cell death during development of the nervous system, Annu. Rev. Neurosci. 14:453–501.

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim, R.W., Flavell, R.A., Vinsant, S., Prevette, D., Kuan, C.-Y., and Rakic, P., 2001, Programmed cell death of developing mammalian neurons after genetic deletion of caspases, J. Neurosci. 21: 4752–4760.

    CAS  PubMed  Google Scholar 

  • Perrelet, D., Ferri, A., MacKenzie, A.E., Smith, G.M., Korneluk, R.G., Liston, P. et al., 2000, IAP family proteins delay motoneuron cell death in vivo, Eur. J. Neurosci. 12:2059–2067.

    Article  CAS  PubMed  Google Scholar 

  • Putcha, G.V., Moulder, K.L., Golden, J.P., Bouillet, P., Adams, J.A., Strasser, A. et al., 2001, Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis, Neuron 29:615–628.

    Article  CAS  PubMed  Google Scholar 

  • Raff, M.C., Barres, B.A., Burne, J.F., Coles, H.S., Ishizaki, Y., and Jacobson, M.D., 1993, Programmed cell death and the control of cell survival: Lessons from the nervous system, Science 262:695–700.

    CAS  PubMed  ADS  Google Scholar 

  • Rakic, S. and Zecevic, N., 2000, Programmed cell death in the developing human telencephalon, Eur. J. Neurosci. 12:2721–2734.

    Article  CAS  PubMed  Google Scholar 

  • Raoul, C., Pettmann, B., and Henderson, C.E., 2000, Active killing of neurons during development and following stress: A role for p75NTR and Fas? Curr. Opin. Neurobiol. 10:111–117.

    Article  CAS  PubMed  Google Scholar 

  • Rehen, S.K., McConnell, M.J., Kaushal, D., Kingsbury, M.A., Yang, A.H., and Chun, J., 2001, Chromosomal variation in neurons of the developing and adult mammalian nervous system, Proc. Natl. Acad. Sci. USA 98:13361–13366.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Riedl, S.J., Renatus, M., Schwarzenbacher, R., Zhou, Q., Sun, C., Fesik, S.W. et al., 2001, Structural basis for the inhibition of caspase-3 by XIAP, Cell 104:791–800.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, G.S., Crocker, S.J., Nicholson, D.W., and Schulz, J.B., 2000, Neuroprotection by the inhibition of apoptosis, Brain Pathol. 10:283–292.

    CAS  PubMed  Google Scholar 

  • Roth, K.A., 2002, In situ detection of apoptotic neurons. In Neuromethods, Vol. 37: Apoptosis Techniques and Protocols (A.C. LeBlanc, ed.), Humana Press, Inc., Totowa, NJ, pp. 205–224.

    Google Scholar 

  • Roth, K.A., Kuan, C.-Y., Haydar, T.F., D’Sa-Eipper, C., Shindler, K.S., Zheng, T.S. et al., 2000, Epistatic and independent apoptotic functions of Caspase-3 and Bcl-XL in the developing nervous system, Proc. Natl. Acad. Sci. USA 97:466–471.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Roth, K.A., Motoyama, N., and Loh, D.Y., 1996, Apoptosis of bcl-x-deficient telencephalic cells in vitro, J. Neurosci. 16:1753–1758.

    CAS  PubMed  Google Scholar 

  • Roy, N., Mahadevan, M.S., McLean, M., Shutler, G., Yaraghi, Z., Farahani, R. et al., 1995, The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy, Cell 80:167–178.

    Article  CAS  PubMed  Google Scholar 

  • Saeki, K., You, A., Okuma, E., Yazaki, Y., Susin, S.A., Kroemer, G. et al., 2000, Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells, Cell Death Differ. 7:1263–1269.

    Article  CAS  PubMed  Google Scholar 

  • Sedlak, T.W., Oltvai, Z.N., Yang, E., Wang, K., Boise, L.H., Thompson, C.B. et al., 1995, Multiple Bcl-2 family members demonstrate selective dimerizations with Bax, Proc. Natl. Acad. Sci. USA 92:7834–7838.

    CAS  PubMed  ADS  Google Scholar 

  • Seglen, P.O. and Bohley, P., 1992, Autophagy and other vacuolar protein degradation mechanisms, Experientia 48:158–172.

    Article  CAS  PubMed  Google Scholar 

  • Shibata, M., Kanamori, S., Isahara, K., Ohsawa, Y., Konishi, A., Kametaka, S. et al., 1998, Participation of cathepsins B and D in apoptosis of PC12 cells following serum deprivation, Biochem. Biophys. Res. Commun. 251:199–203.

    Article  CAS  PubMed  Google Scholar 

  • Shindler, K.S., Latham, C.B., and Roth, K.A., 1997, bax deficiency prevents the increased cell death of immature neurons in bcl-x-deficient mice, J. Neurosci. 17:3112–3119.

    CAS  PubMed  Google Scholar 

  • Shindler, K.S., Yunker, A.M.R., Cahn, R., Zha, J., Korsmeyer, S.J., and Roth, K.A., 1998, Trophic support promotes survival of bcl-x-deficient telencephalic cells in vitro, Cell Death Differ. 5:901–910.

    Article  CAS  PubMed  Google Scholar 

  • Slack, R.S., El-Bizri, H., Wong, J., Belliveau, D.J., and Miller, F.D., 1998, A critical temporal requirement for the retinoblastoma protein family during neuronal determination, J. Cell Biol. 140:1497–1509.

    Article  CAS  PubMed  Google Scholar 

  • Snider, W.D., 1994, Functions of the neurotrophins during nervous system development: What the knockouts are teaching us, Cell 77:627–638.

    Article  PubMed  ADS  Google Scholar 

  • Sommer, L. and Rao, M., 2002, Neural stem cells and regulation of cell number, Progress in Neurobiol. 66:1–18.

    CAS  Google Scholar 

  • Srinivasan, A., Roth, K.A., Sayers, R.O., Shindler, K.S., Wong, A.M., Fritz, L.C., and Tomaselli, K.J., 1998, In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system, Cell Death Differ. 5:1004–1016.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasula, S.M., Hegde, R., Saleh, A., Datta, P., Shiozaki, E., Chai, J. et al., 2001, A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis, Nature 410:112–116.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Stoka, V.V., Turk, B., Schendel, S.L., Kim, T.W., Cirman, T., Snipas, S.J. et al., 2001, Lysosomal protease pathways to apoptosis: Cleavage of bid, not pro-caspases is the most likely route, J. Biol. Chem. 276:3149–3157.

    Article  CAS  PubMed  Google Scholar 

  • Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M. et al., 1999, Molecular characterization of mitochondrial apoptosisinducing factor, Nature 397:441–446.

    CAS  PubMed  ADS  Google Scholar 

  • Thomaidou, D., Mione, M.C., Cavanagh, J.F.R., and Parnavelas, J.G., 1997, Apoptosis and its relation to the cell cycle in the developing cerebral cortex, J. Neurosci. 17:1075–1085.

    CAS  PubMed  Google Scholar 

  • Tolkovsky, A.M., Xue, L., Fletcher, G.C., and Borutaite, V., 2002, Mitochondrial disappearance from cells: A clue to the role of autophagy in programmed cell death and disease? Biochemie 84:233–240.

    Article  CAS  Google Scholar 

  • Uchiyama, Y., 2001, Autophagic cell death and its execution by lysosomal cathepsins, Arch. Histol. Cytol. 64:233–246.

    Article  CAS  PubMed  Google Scholar 

  • van den Eijnde, S.M., Lips, J., Boshart, L., Marani, E., Reutelingsperger, C.P.M., and De Zeeuw, C.I., 1999, Spatiotemporal distribution of dying neurons during early mouse development, Eur. J. Neurosci. 11:712–724.

    PubMed  Google Scholar 

  • Veis, D.J., Sorenson, C.M., Shutter, J.R., and Korsmeyer, S.J., 1993, Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair, Cell 75:229–240.

    Article  CAS  PubMed  Google Scholar 

  • Verhagen, A.M., Ekert, P.G., Pakusch, M., Silke, J., Connolly, L.M., Reid, G.E. et al., 2000, Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins, Cell 102:43–53.

    Article  CAS  PubMed  Google Scholar 

  • Voyvodic, J.T., 1996, Cell death in cortical development: How much? Why? So what? Neuron 16:693–696.

    Article  CAS  PubMed  Google Scholar 

  • Wei, M.C., Zong, W.-X., Cheng, E.H.Y., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A. et al., 2001, Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death, Science 292:727–730.

    CAS  PubMed  ADS  Google Scholar 

  • White, F.A., Keller-Peck, C.R., Knudson, C.M., Korsmeyer, S.J., and Snider, W.D., 1998, Widespread elimination of naturally occurring neuronal death in Bax-deficient mice, J. Neurosci. 18:1428–1439.

    CAS  PubMed  Google Scholar 

  • Wu, G.S., Saftig, P., Peters, C., and El-Deiry, W.S., 1998, Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity, Oncogene 16:2177–2183.

    CAS  PubMed  Google Scholar 

  • Xue, L., Fletcher, G.C., and Tolkovsky, A.M., 1999, Autophagy is activated by apoptotic signalling in sympathetic neurons: An alternative mechanism of death execution, Mol. Cell. Neurosci. 14:180–198.

    Article  CAS  PubMed  Google Scholar 

  • Yu, S.-W., Wang, H., Poitras, M.F., Coombs, C., Bowers, W.J., Federoff, H.J. et al., 2002, Mediation of poly(ADP-Ribose) polymerase-1-dependent cell death by apoptosis-inducing factor, Science 297:259–263.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zaidi, A.U., D’Sa-Eipper, C., Brenner, J., Kuida, K., Zheng, T.S., Flavell, R.A. et al., 2001, Bcl-XL-Caspase-9 interactions in the developing nervous system: Evidence for multiple death pathways, J. Neurosci. 21: 169–175.

    CAS  PubMed  Google Scholar 

  • Zaidi, A.U., McDonough, J.S., Klocke, B.J., Latham, C.B., Korsmeyer, S.J., Flavell, R.A. et al., 2001, Chloroquine-induced neuronal cell death is p53 and Bcl-2 family-dependent but caspase-independent, J. Neuropathol. Exp. Neurol. 60:937–945.

    CAS  PubMed  Google Scholar 

  • Zheng, T.S. and Flavell, R.A., 2000, Divinations and surprises: Genetic analysis of caspase function in mice, Exp. Cell Res. 256:67–73.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, T.S., Hunot, S., Kuida, K., Momoi, T., Srinivasan, A., Nicholson, D.W. et al., 2000, Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation, Nat. Med. 6:1241–1247.

    CAS  PubMed  Google Scholar 

  • Zheng, T.S., Schlosser, S.F., Dao, T., Hingorani, R., Crispe, I.N., Boyer, J.L. et al., 1998, Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo, Proc. Natl. Acad. Sci. USA 95:13618–13623.

    CAS  PubMed  ADS  Google Scholar 

  • Zou, H., Henzel, W.J., Liu, X., Lutschg, A., and Wang, X., 1997, Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3, Cell 90:405–413.

    CAS  PubMed  Google Scholar 

  • Zou, H., Li, Y., Liu, X., and Wang, X., 1999, An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9, J. Biol. Chem. 274:11549–11556.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Roth, K.A. (2005). Programmed Cell Death. In: Rao, M.S., Jacobson†, M. (eds) Developmental Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/0-387-28117-7_11

Download citation

Publish with us

Policies and ethics