Skip to main content

Targeting Antigen-Specific T Cells for Gene Therapy of Autoimmune Disease

  • Chapter
Gene Therapy of Autoimmune Diseases

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 439 Accesses

Abstract

One of the most exciting advances in the field of gene therapy in recent years is the establishment of the antigen-specific T cell as a vector for the delivery of genetically-derived treatment in vivo. In contrast with traditional applications of gene therapy, the unique versatility, specificity and memory of the T cell affords the researcher or clinician the ability to apply a broad range of tactics in the genetic treatment of disease. The T cell may be modified to deliver therapeutic products or regenerative products to sites of inflammation and tissue destruction. In addition, the T cell may be altered to modulate cellular interactions or to correct its own genetic defects to ameliorate disease. These genetic modification strategies as they relate to the treatment of autoimmune disease in experimental animal models will be the focus of this chapter, with particular emphasis on the analogs of multiple sclerosis (MS), insulin-dependent diabetes mellitus (IDDM) and rheumatoid arthritis (RA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schenborn ET. Transfection technologies. In: Tymms MJ, ed. Methods in Molecular Biology, vol 130. Totowa: Humana Press Inc, 2000:91–102.

    Google Scholar 

  2. Costa GL, Benson JM, Seroogy CM et al. Targeting rare populations of murine antigen-specific T lymphocytes by retroviral transduction for potential application in gene therapy for autoimmune disease. J Immunol 2000; 164(7):3581–3590.

    PubMed  CAS  Google Scholar 

  3. Cui Y, Golob J, Kelleher E et al. Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoetic stem/progenitor cells. Blood 2002; 99(2):399–408.

    Article  PubMed  CAS  Google Scholar 

  4. Aiuti A, Slavin S, Memet A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296(5577):2410–2413.

    Article  PubMed  CAS  Google Scholar 

  5. Martin R, McFarland HF. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci 1995; 32(2):121–182.

    PubMed  CAS  Google Scholar 

  6. Shaw MK, Lorens JB, Dhawan A et al. Local delivery of interleukin 4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J Exp Med 1997; 185(9):1711–1714.

    Article  PubMed  CAS  Google Scholar 

  7. Mathisen PM, Yu M, Johnson JM et al. Treatment of experimental autoimmune encephalomyelitis with genetically modified memory T cells. J Exp Med 1997; 186(1):159–164.

    Article  PubMed  CAS  Google Scholar 

  8. Atkinson MA, Leiter EH. The NOD mouse model of type 1 diabetes: As good as it gets? Nat Med 1999; 5(6):601–604.

    Article  PubMed  CAS  Google Scholar 

  9. Moritani M, Yoshimoto K, Ii S et al. Prevention of adoptively transferred diabetes in nonobese diabetic mice with IL-10-transduced islet-specific Th1 lymphocytes: A gene therapy model for autoimmune diabetes. J Clin Invest 1996; 98(8):1851–1859.

    PubMed  CAS  Google Scholar 

  10. Yamamoto AM, Chernajovsky Y, Lepault F et al. The activity of immunoregulatory T cells mediating active tolerance is potentiated in nonobese diabetic mice by an IL-4-based retroviral gene therapy. J Immunol 2001; 166:4973–4980.

    PubMed  CAS  Google Scholar 

  11. Myers LK, Rosloneic EF, Cremer MA et al. Collagen-induced arthritis, an animal model of autoimmunity. Life Sci 1997; 61(19):1861–1878.

    Article  PubMed  CAS  Google Scholar 

  12. Bessis N, Boissier M-C, Ferrara P et al. Attenuation of collagen-induced arthritis in mice by treatment with vector cells engineered to secrete interleukin-13. Eur J Immunol 1996; 26:2399–2403.

    PubMed  CAS  Google Scholar 

  13. Chernajovsky Y, Adams G, Triantaphyllopoulos K et al. Pathogenic lymphoid cells engineered to express TGF β1 ameliorate disease in a collagen-induced arthritis model. Gen Ther 1997; 4(6):553–559.

    Article  CAS  Google Scholar 

  14. Prud’homme GJ, Piccirillo CA. The inhibitory effects of transforming growth factor-beta-1 (TGF-β1) in autoimmune diseases. J Autoimmun 2000; 14:23–42.

    Article  PubMed  CAS  Google Scholar 

  15. Nakajima A, Seroogy CM, Sandora MR et al. Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest 2001; 107(10):1293–1301.

    PubMed  CAS  Google Scholar 

  16. Hammer MH, Schröder G, Risch K et al. Antigen-dependent transgene expression in kidney transplantation: A novel approach using gene-engineered T lymphocytes. J Am Soc Nephrol 2002; 13:511–518.

    PubMed  CAS  Google Scholar 

  17. Grill RJ, Blesch A, Tuszynski MH. Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells. Exp Neurol 1997; 148:444–452.

    Article  PubMed  CAS  Google Scholar 

  18. Staddon JM, Rubin L. Cell adhesion, cell junctions and the blood-brain barrier. Curr Opin Neurobiol 1996; 6(5):622–627.

    Article  PubMed  CAS  Google Scholar 

  19. Schwartz M, Moalem G. Beneficial immune activity after CNS injury: Prospects for vaccination. J Neuroimmunol 2001; 113:185–192.

    Article  PubMed  CAS  Google Scholar 

  20. Flügel A, Matsumuro K, Neumann H et al. Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: Inhibition of monocyte transendothelial migration. Eur J Immunol 2001; 31:11–22.

    Article  PubMed  Google Scholar 

  21. Prineas JW, Graham JS. Multiple sclerosis: Capping of surface immunoglobulin G on macrophages engaged in myelin breakdown. Ann Neurol 1981; 10:149–158.

    Article  PubMed  CAS  Google Scholar 

  22. Trapp BD, Peterson J, Ransohoff RM et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338(5):278–285.

    Article  PubMed  CAS  Google Scholar 

  23. Mathisen PM, Johnson JM, Kawzcak JA et al. Differential DM20 gene expression distinguishes two distinct patterns of spontaneous recovery from murine autoimmune encephalomyelitis. J Neurosci Res 2001; 64:542–551.

    Article  PubMed  CAS  Google Scholar 

  24. Mathisen PM, Yu M, Yin L et al. Th2 cells expressing transgene PDGF-A serve as vectors for gene therapy in autoimmune demyelinating disease. J Autoimmun 1999; 13:31–38.

    Article  PubMed  CAS  Google Scholar 

  25. Chen Y, Rosloniec E, Goral MI et al. Redirection of T cell effector function in vivo and enhanced collagen-induced arthritis mediated by an IL-2Rα/IL-4Rβ chimeric receptor transgene. J Immunol 2001; 166:4163–4169.

    PubMed  CAS  Google Scholar 

  26. Lafaille JJ, Van de Keere AL, Hsu AL et al. Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from disease. J Exp Med 1997; 186:307–312.

    Article  PubMed  CAS  Google Scholar 

  27. Pakala SV, Kurrer MO, Katz JD. T helper 2 (Th2) T cells induce acute pancreatitis and diabetes in immune-compromised nonobese diabetic (NOD) mice. J Exp Med 1997; 186(2):299–306.

    Article  PubMed  CAS  Google Scholar 

  28. Matsui Y, Inobe M, Okamoto H et al. Blockade of T cell costimulatory signals using adenovirus vectors prevents both the induction and the progression of experimental autoimmune myocarditis. J Mol Cell Cardiol 2002; 34:279–295.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang H, Yang Y, Horton J et al. Amelioration of collagen-induced arthritis by CD95 (Apo-1/Fas)-ligand gene transfer. J Clin Invest 1997; 100(8):1951–1957.

    PubMed  CAS  Google Scholar 

  30. Jyothi MD, Flavell R, Geiger TL. Targeting autoantigen-specific T cells and suppression of autoimmune encephalomyelitis with receptor-modified T lymphocytes. Nat Biotechnol 2002; 20(12):1215–1220.

    Article  PubMed  CAS  Google Scholar 

  31. Tuohy VK, Yu M, Yin L et al. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev 1998; 164:93–100.

    Article  PubMed  CAS  Google Scholar 

  32. Yu M, Johnson JM, Tuohy VK. A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: A basis for peptide-specific therapy after onset of clinical disease. J Exp Med 1996; 183:1777–1788.

    Article  PubMed  CAS  Google Scholar 

  33. Yin L, Yu M, Edling AE et al. Preemptive targeting of the epitope spreading cascade with genetically modified regulatory T cells during autoimmune demyelinating disease. J Immunol 2001; 167:6105–6112.

    PubMed  CAS  Google Scholar 

  34. Garren H, Steinman L. DNA vaccination in the treatment of autoimmune disease. In: Fathman CG, ed. Biologic and gene therapy of autoimmune disease. Basel: Karger, 2000:203–216.

    Chapter  Google Scholar 

  35. Ruiz PJ, Garren H, Ruiz IU et al. Suppressive immunization with DNA encoding a self-peptide prevents autoimmune disease: Modulation of T cell costimulation. J Immunol 1999; 162:3336–3341.

    PubMed  CAS  Google Scholar 

  36. Tsunoda I, Kuang LQ, Tolley ND et al. Enhancement of experimental autoimmune encephalomyelitis (EAE) by DNA immunization with myelin proteolipid protein (PLP) plasmid DNA. J Neuropathol Exp Neurol 1998; 57:758–767.

    PubMed  CAS  Google Scholar 

  37. Chen C-C, Rivera A, Ron N et al. A gene therapy approach for treating T-cell-mediated autoimmune diseases. Blood 2001; 97(4):886–894.

    Article  PubMed  CAS  Google Scholar 

  38. Agarwal RK, Kang Y, Zambidis E et al. Retroviral gene therapy with an immunoglobulin-antigen fusion construct protects from experimental autoimmune uveitis. J Clin Invest 2000; 106(2):245–252.

    Article  PubMed  CAS  Google Scholar 

  39. Wildbaum G, Youssef S, Karin N. A targeted DNA vaccine augments the natural immune response to self TNF-a and suppresses ongoing adjuvant arthritis. J Immunol 2000; 165:5860–5866.

    PubMed  CAS  Google Scholar 

  40. Wildbaum G, Karin N. Augmentation of natural immunity to a pro-inflammatory cytokine (TNF-alpha) by targeted DNA vaccine confers long-lasting resistance to experimental autoimmune encephalomyelitis. Gene Ther 1999; 6(6):1128–1138.

    Article  PubMed  CAS  Google Scholar 

  41. Wildbaum G, Netzer N, Karin N. Plasmid DNA encoding IFN-γ-inducible protein 10 redirects antigen-specific T cell polarization and suppresses experimental autoimmune encephalomyelitis. J Immunol 2002; 168:5885–5892.

    PubMed  CAS  Google Scholar 

  42. Kessels HWHG, Wolkers MC, van den Boom MD et al. Immunotherapy through TCR gene transfer. Nat Immunol 2001; 2(10):957–961.

    Article  PubMed  CAS  Google Scholar 

  43. Croxford JL, Feldmann M, Chernajovsky Y et al. Different therapeutic outcomes in experimental allergic encephalomyelitis dependent upon the mode of delivery of IL-10: A comparison of the effects of protein, adenoviral or retroviral IL-10 delivery into the central nervous system. J Immunol 2001; 166:4124–4130.

    PubMed  CAS  Google Scholar 

  44. Morita Y, Yang J, Gupta R et al. Dendritic cells genetically engineered to express IL-4 inhibit murine collagen-induced arthritis. J Clin Invest 2001; 107:1275–1284.

    PubMed  CAS  Google Scholar 

  45. Julius MA, Yan Q, Zhang Z et al. Q vectors, bicistronic vectors for gene transfer. Biotechniques 2000; 28(4):702–708.

    PubMed  CAS  Google Scholar 

  46. Zhao-Emonet JC, Marodon G, Pioche-Durieu C et al. T cell-specific expression from Mo-MLV retroviral vectors containing a CD4 mini-promoter/enhancer. J Gene Med 2000; 2:416–425.

    Article  PubMed  CAS  Google Scholar 

  47. Kaczmarczyk SJ, Green JE. A single vector containing modified cre recombinase and LOX recombination sequences for inducible tissue-specific amplification of gene expression. Nucleic Acids Res 2001; 29(12):e56.

    Article  PubMed  CAS  Google Scholar 

  48. Bunting M, Bernstein KE, Greer JM et al. Targeting genes for self-excision in the germ line. Genes Dev 1999; 13:1524–1528.

    PubMed  CAS  Google Scholar 

  49. Mullen CA. Metabolic suicide genes in gene therapy. Pharmacol Ther 1994; 63:199–207.

    Article  PubMed  CAS  Google Scholar 

  50. Cohen JL, Boyer O, Salomon B et al. Prevention of graft-versus-host disease in mice using a suicide gene expressed in T lymphocytes. Blood 1997; 89(12):4636–4645.

    PubMed  CAS  Google Scholar 

  51. Bordignon C, Bonini C, Verzeletti S et al. Transfer of the HSV-tk gene into donor peripheral blood lymphocytes for in vivo modulation of donor anti-tumor immunity after allogeneic bone marrow transplantation. Hum Gen Ther 1995; 6(6):813–819.

    CAS  Google Scholar 

  52. Thomas-Vaslin V, Bellier B, Cohen JL et al. Prolonged allograft survival through conditional and specific ablation of alloreactive T cells expressing a suicide gene. Transplantation 2000; 69(10):2002–2003.

    Article  Google Scholar 

  53. Panitch HS, Hirsch RL, Haley AS et al. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1987; 1(8538):893–895.

    Article  PubMed  CAS  Google Scholar 

  54. Willard HF. Artificial chromosomes coming to life. Science 2000; 290(5495):1308–1309.

    Article  PubMed  CAS  Google Scholar 

  55. Chandler LA, Doukas J, Gonzalez AM et al. FGF2-targeted adenovirus encoding platelet-derived growth factor-B enhances de novo tissue formation. Mol Ther 2000; 2(2):153–160.

    Article  PubMed  CAS  Google Scholar 

  56. Ko KS, Lee M, Koh JJ et al. Combined administration of plasmids encoding IL-4 and IL-10 prevents the development of autoimmune diabetes in nonobese diabetic mice. Mol Ther 2001; 4(4):313–316.

    Article  PubMed  CAS  Google Scholar 

  57. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12:991–1045.

    PubMed  CAS  Google Scholar 

  58. Bach J-F. NonTh2 regulatory T-cell control of Th1 autoimmunity. Scand J Immunol 2001; 54:21–29.

    Article  PubMed  CAS  Google Scholar 

  59. Dudley ME, Wunderlich JR, Robbins PF et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298(5594):850–854.

    Article  PubMed  CAS  Google Scholar 

  60. Cavazzana-Calvo M, Hacien-Bey S, de Saint Basile G et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288(5466):669–672.

    Article  PubMed  CAS  Google Scholar 

  61. Sugarman J. Ethical considerations in leaping from bench to bedside. Science 1999; 285(5436):2071–2072.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Johnson, J.M., Tuohy, V.K. (2005). Targeting Antigen-Specific T Cells for Gene Therapy of Autoimmune Disease. In: Gene Therapy of Autoimmune Diseases. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28670-5_4

Download citation

Publish with us

Policies and ethics