Skip to main content

Central Nervous System Imaging

  • Chapter
Oncology

Abstract

Brain tumor imaging has four main goals, namely, evaluating lesion extent, estimating tumor grade, identifying associated complications, and defining a comprehensive differential diagnosis. It assesses the relationship of the lesion to various brain structures and identifies associated findings, such as increased intracranial pressure, impending herniation, hydrocephalus, hemorrhagic transformation, and mass effect. A comprehensive differential diagnosis is usually established based on the patient’s age, tumor location, and specific imaging findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Padhani AR, Dixon AK. Whole body computed tomography: recent developments. In: Grainger RG, Allison D (eds). Grainger & Allison’s Diagnostic Radiology: A Textbook of Medical Imaging, vol 1. New York: Churchill Livingstone, 2001:81–82.

    Google Scholar 

  2. Okuda T, Korogi Y, Shigematsu Y, et al. Brain lesions: when should fluid-attenuated inversion-recovery sequences be used in MR evaluation? Radiology 1999;212(3):793–798.

    PubMed  CAS  Google Scholar 

  3. Pomper MG, Port JD. New techniques in MR imaging of brain tumors. Magn Reson Imaging Clin N Am 2000;8(4):691–713.

    PubMed  CAS  Google Scholar 

  4. Maubon AJ, Pothin A, Ferru JM, Berger VM, Daures JP, Rouanet JP. Unselected brain 0.5-T MR imaging: comparison of lesion detection and characterization with three T2-weighted sequences. Radiology 1998;208(3):671–678.

    PubMed  CAS  Google Scholar 

  5. De Coene B, Hajnal JV, Gatehouse P, et al. MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 1992;13(6):1555–1564.

    PubMed  Google Scholar 

  6. Tsuchiya K, Mizutani Y, Hachiya J. Preliminary evaluation of fluid-attenuated inversion-recovery MR in the diagnosis of intracranial tumors. AJNR Am J Neuroradiol 1996;17(6):1081–1086.

    PubMed  CAS  Google Scholar 

  7. Bynevelt M, Britton J, Seymour H, MacSweeney E, Thomas N, Sandhu K. FLAIR imaging in the follow-up of low-grade gliomas: time to dispense with the dual-echo? Neuroradiology 2001;43(2):129–133.

    Article  PubMed  CAS  Google Scholar 

  8. Chen S, Ikawa F, Kurisu K, Arita K, Takaba J, Kanou Y. Quantitative MR evaluation of intracranial epidermoid tumors by fast fluid-attenuated inversion recovery imaging and echo-planar diffusion-weighted imaging. AJNR Am J Neuroradiol 2001;22(6):1089–1096.

    PubMed  CAS  Google Scholar 

  9. Ikushima I, Korogi Y, Hirai T, et al. MR of epidermoids with a variety of pulse sequences. AJNR Am J Neuroradiol 1997;18(7):1359–1363.

    PubMed  CAS  Google Scholar 

  10. Singh SK, Agris JM, Leeds NE, Ginsberg LE. Intracranial leptomeningeal metastases: comparison of depiction at FLAIR and contrast-enhanced MR imaging. Radiology 2000;217(1):50–53.

    PubMed  CAS  Google Scholar 

  11. Griffiths PD, Coley SC, Romanowski CA, Hodgson T, Wilkinson ID. Contrast-enhanced fluid-attenuated inversion recovery imaging for leptomeningeal disease in children. AJNR Am J Neuroradiol 2003;24(4):719–723.

    PubMed  Google Scholar 

  12. Ebisu T, Tanaka C, Umeda M, et al. Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging. Magn Reson Imaging. 1996;14(9):1113–1116.

    Article  PubMed  CAS  Google Scholar 

  13. Dorenbeck U, Butz B, Schlaier J, Bretschneider T, Schuierer G, Feuerbach S. Diffusion-weighted echo-planar MRI of the brain with calculated ADCs: a useful tool in the differential diagnosis of tumor necrosis from abscess? J Neuroimaging 2003;13(4):330–338.

    Article  PubMed  CAS  Google Scholar 

  14. Guzman R, Barth A, Lovblad KO, et al. Use of diffusion-weighted magnetic resonance imaging in differentiating purulent brain processes from cystic brain tumors. J Neurosurg 2002; 97(5):1101–1107.

    Article  PubMed  Google Scholar 

  15. Chang SC, Lai PH, Chen WL, et al. Diffusion-weighted MRI features of brain abscess and cystic or necrotic brain tumors: comparison with conventional MRI. Clin Imaging 2002;26(4):227–236.

    Article  PubMed  Google Scholar 

  16. Lai PH, Ho JT, Chen WL, et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol 2002;23(8):1369–1377.

    PubMed  Google Scholar 

  17. Kim YJ, Chang KH, Song IC, et al. Brain abscess and necrotic or cystic brain tumor: discrimination with signal intensity on diffusion-weighted MR imaging. AJR Am J Roentgenol 1998;171(6):1487–1490.

    PubMed  CAS  Google Scholar 

  18. Chan JH, Tsui EY, Chau LF, et al. Discrimination of an infected brain tumor from a cerebral abscess by combined MR perfusion and diffusion imaging. Comput Med Imaging Graph 2002;26(1):19–23.

    Article  PubMed  CAS  Google Scholar 

  19. Nadal Desbarats L, Herlidou S, de Marco G, et al. Differential MRI diagnosis between brain abscesses and necrotic or cystic brain tumors using the apparent diffusion coefficient and normalized diffusion-weighted images. Magn Reson Imaging 2003;21(6):645–650.

    Article  PubMed  Google Scholar 

  20. Tsuruda JS, Chew WM, Moseley ME, Norman D. Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors. AJNR Am J Neuroradiol 1990;11(5):925–931; discussion 932–924.

    PubMed  CAS  Google Scholar 

  21. Tsuruda JS, Chew WM, Moseley ME, Norman D. Diffusion-weighted MR imaging of extraaxial tumors. Magn Reson Med 1991;19(2):316–320.

    Article  PubMed  CAS  Google Scholar 

  22. Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999;9(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  23. Kotsenas AL, Roth TC, Manness WK, Faerber EN. Abnormal diffusion-weighted MRI in medulloblastoma: does it reflect small cell histology? Pediatr Radiol 1999;29(7):524–526.

    Article  PubMed  CAS  Google Scholar 

  24. Bulakbasi N, Kocaoglu M, Ors F, Tayfun C, Ucoz T. Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. AJNR Am J Neuroradiol 2003;24(2):225–233.

    PubMed  Google Scholar 

  25. Kono K, Inoue Y, Nakayama K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 2001;22(6):1081–1088.

    PubMed  CAS  Google Scholar 

  26. Yang D, Korogi Y, Sugahara T, et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 2002;44(8):656–666.

    Article  PubMed  CAS  Google Scholar 

  27. Castillo M, Smith JK, Kwock L, Wilber K. Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. AJNR Am J Neuroradiol 2001;22(1):60–64.

    PubMed  CAS  Google Scholar 

  28. Stadnik TW, Chaskis C, Michotte A, et al. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 2001;22(5):969–976.

    PubMed  CAS  Google Scholar 

  29. Aronen HJ, Gazit IE, Louis DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994;191(1):41–51.

    PubMed  CAS  Google Scholar 

  30. Sugahara T, Korogi Y, Kochi M, et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 1998;171(6):1479–1486.

    PubMed  CAS  Google Scholar 

  31. Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003;24(10):1989–1998.

    PubMed  Google Scholar 

  32. Yang S, Wetzel S, Law M, Zagzag D, Cha S. Dynamic contrast-enhanced T2*-weighted MR imaging of gliomatosis cerebri. AJNR Am J Neuroradiol 2002;23(3):350–355.

    PubMed  Google Scholar 

  33. Shin JH, Lee HK, Kwun BD, et al. Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol 2002;179(3):783–789.

    PubMed  Google Scholar 

  34. Lam WW, Chan KW, Wong WL, Poon WS, Metreweli C. Preoperative grading of intracranial glioma. Acta Radiol 2001;42(6):548–554.

    Article  PubMed  CAS  Google Scholar 

  35. Hartmann M, Heiland S, Harting I, et al. Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci Lett 2003;338(2):119–122.

    Article  PubMed  CAS  Google Scholar 

  36. Ernst TM, Chang L, Witt MD, et al. Cerebral toxoplasmosis and lymphoma in AIDS: perfusion MR imaging experience in 13 patients. Radiology 1998;208(3):663–669.

    PubMed  CAS  Google Scholar 

  37. Grand S, Passaro G, Ziegler A, et al. Necrotic tumor versus brain abscess: importance of amino acids detected at 1H MR spectroscopy: initial results. Radiology 1999;213(3):785–793.

    PubMed  CAS  Google Scholar 

  38. Burtscher IM, Holtas S. Proton magnetic resonance spectroscopy in brain tumours: clinical applications. Neuroradiology 2001;43(5):345–352.

    Article  PubMed  CAS  Google Scholar 

  39. Fulham MJ, Bizzi A, Dietz MJ, et al. Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 1992;185(3):675–686.

    PubMed  CAS  Google Scholar 

  40. Gupta RK, Cloughesy TF, Sinha U, et al. Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 2000;50(3):215–226.

    Article  PubMed  CAS  Google Scholar 

  41. Rand SD, Prost R, Haughton V, et al. Accuracy of single-voxel proton MR spectroscopy in distinguishing neoplastic from non-neoplastic brain lesions. AJNR Am J Neuroradiol 1997;18(9):1695–1704.

    PubMed  CAS  Google Scholar 

  42. Preul MC, Caramanos Z, Collins DL, et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 1996;2(3):323–325.

    Article  PubMed  CAS  Google Scholar 

  43. Moller-Hartmann W, Herminghaus S, Krings T, et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 2002;44(5):371–381.

    Article  PubMed  CAS  Google Scholar 

  44. Dowling C, Bollen AW, Noworolski SM, et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 2001;22(4):604–612.

    PubMed  CAS  Google Scholar 

  45. Martin AJ, Liu H, Hall WA, Truwit CL. Preliminary assessment of turbo spectroscopic imaging for targeting in brain biopsy. AJNR Am J Neuroradiol 2001;22(5):959–968.

    PubMed  CAS  Google Scholar 

  46. Croteau D, Scarpace L, Hearshen D, et al. Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery 2001;49(4):823–829.

    Article  PubMed  CAS  Google Scholar 

  47. Fan G, Sun B, Wu Z, Guo Q, Guo Y. In vivo single-voxel proton MR spectroscopy in the differentiation of high-grade gliomas and solitary metastases. Clin Radiol 2004;59(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  48. Matthews PM, Jezzard P. Functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 2004;75(1):6–12.

    PubMed  CAS  Google Scholar 

  49. Fandino J, Kollias SS, Wieser HG, Valavanis A, Yonekawa Y. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 1999;91(2):238–250.

    PubMed  CAS  Google Scholar 

  50. Lurito JT, Lowe MJ, Sartorius C, Mathews VP. Comparison of fMRI and intraoperative direct cortical stimulation in localization of receptive language areas. J Comput Assist Tomogr 2000;24(1):99–105.

    Article  PubMed  CAS  Google Scholar 

  51. Paulesu E, Connelly A, Frith CD, et al. Functional MR imaging correlations with positron emission tomography. Initial experience using a cognitive activation paradigm on verbal working memory. Neuroimaging Clin N Am 1995;5(2):207–225.

    PubMed  CAS  Google Scholar 

  52. Krings T, Schreckenberger M, Rohde V, et al. Functional MRI and 18F FDG-positron emission tomography for presurgical planning: comparison with electrical cortical stimulation. Acta Neurochir (Wien) 2002;144(9):889–899; discussion 899.

    Article  CAS  Google Scholar 

  53. Schreiber A, Hubbe U, Ziyeh S, Hennig J. The influence of gliomas and nonglial space-occupying lesions on blood-oxygenlevel-dependent contrast enhancement. AJNR Am J Neuroradiol 2000;21(6):1055–1063.

    PubMed  CAS  Google Scholar 

  54. Holodny AI, Schulder M, Liu WC, Wolko J, Maldjian JA, Kalnin AJ. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 2000;21(8):1415–1422.

    PubMed  CAS  Google Scholar 

  55. Gauvain KM, McKinstry RC, Mukherjee P, et al. Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 2001;177(2):449–454.

    PubMed  CAS  Google Scholar 

  56. Beppu T, Inoue T, Shibata Y, et al. Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors. J Neurooncol 2003;63(2):109–116.

    Article  PubMed  Google Scholar 

  57. Mori S, Frederiksen K, van Zijl PC, et al. Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Ann Neurol 2002;51(3):377–380.

    Article  PubMed  Google Scholar 

  58. Sinha S, Bastin ME, Whittle IR, Wardlaw JM. Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR Am J euroradiol 2002;23(4):520–527.

    Google Scholar 

  59. Lu S, Ahn D, Johnson G, Cha S. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol 2003;24(5):937–941.

    PubMed  Google Scholar 

  60. Yamada K, Kizu O, Mori S, et al. Brain fiber tracking with clinically feasible diffusion-tensor MR imaging: initial experience. Radiology 2003;227(1):295–301.

    Article  PubMed  Google Scholar 

  61. Chao ST, Suh JH, Raja S, Lee SY, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 2001;96(3):191–197.

    Article  PubMed  CAS  Google Scholar 

  62. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 1998;19(3):407–413.

    PubMed  CAS  Google Scholar 

  63. De Witte O, Levivier M, Violon P, et al. Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-dglucose in the low-grade glioma. Neurosurgery 1996;39(3):470–476; discussion 476–477.

    Article  PubMed  Google Scholar 

  64. Barker FG JR, Chang SM, Valk PE, Pounds TR, Prados MD. 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer (Phila)1997;79(1):115–126.

    Article  PubMed  CAS  Google Scholar 

  65. Spence AM, Mankoff DA, Muzi M. Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 2003;13(4):717–739.

    Article  PubMed  Google Scholar 

  66. Sun D, Liu Q, Liu W, Hu W. Clinical application of 201Tl SPECT imaging of brain tumors. J Nucl Med 2000;41(1):5–10.

    PubMed  CAS  Google Scholar 

  67. Oriuchi N, Tamura M, Shibazaki T, et al. Clinical evaluation of thallium-201 SPECT in supratentorial gliomas: relationship to histologic grade, prognosis and proliferative activities. J Nucl Med 1993;34(12):2085–2089.

    PubMed  CAS  Google Scholar 

  68. Benard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med 2003;33(2):148–162.

    Article  PubMed  Google Scholar 

  69. Golfinos JG, Fitzpatrick BC, Smith LR, Spetzler RF. Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 1995;83(2):197–205.

    PubMed  CAS  Google Scholar 

  70. Wirtz CR, Albert FK, Schwaderer M, et al. The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery. Neurol Res 2000;22(4):354–360.

    PubMed  CAS  Google Scholar 

  71. Gildenberg PL, Woo SY. Multimodality program involving stereotactic surgery in brain tumor management. Stereotact Funct Neurosurg 2000;75(2–3):147–152.

    Article  PubMed  CAS  Google Scholar 

  72. Knauth M, Wirtz CR, Tronnier VM, Aras N, Kunze S, Sartor K. Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR Am J Neuroradiol 1999;20(9):1642–1646.

    PubMed  CAS  Google Scholar 

  73. Tuominen J, Yrjana SK, Katisko JP, Heikkila J, Koivukangas J. Intraoperative imaging in a comprehensive neuronavigation environment for minimally invasive brain tumour surgery. Acta Neurochir Suppl 2003;85:115–120.

    PubMed  CAS  Google Scholar 

  74. Kanner AA, Vogelbaum MA, Mayberg MR, Weisenberger JP, Barnett GH. Intracranial navigation by using low-field intraoperative magnetic resonance imaging: preliminary experience. J Neurosurg 2002;97(5):1115–1124.

    PubMed  Google Scholar 

  75. Wirtz CR, Knauth M, Staubert A, et al. Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 2000;46(5):1112–1120; discussion 1120–1121.

    Article  PubMed  CAS  Google Scholar 

  76. Lewin JS, Metzger A, Selman WR. Intraoperative magnetic resonance image guidance in neurosurgery. J Magn Reson Imaging 2000;12(4):512–524.

    Article  PubMed  CAS  Google Scholar 

  77. Thompson TP, Lunsford LD, Kondziolka D. Distinguishing recurrent tumor and radiation necrosis with positron emission tomography versus stereotactic biopsy. Stereotact Funct Neurosurg 1999;73(1–4):9–14.

    Article  PubMed  CAS  Google Scholar 

  78. Kahn D, Follett KA, Bushnell DL, et al. Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs. 18F-fluorodeoxyglucose PET. AJR Am J Roentgenol 1994;163(6):1459–1465.

    PubMed  CAS  Google Scholar 

  79. Schlemmer HP, Bachert P, Herfarth KK, Zuna I, Debus J, van Kaick G. Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR Am J Neuroradiol 2001;22(7):1316–1324.

    PubMed  CAS  Google Scholar 

  80. Rock JP, Hearshen D, Scarpace L, et al. Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 2002;51(4):912–919; discussion 919–920.

    Article  PubMed  Google Scholar 

  81. Siegal T, Rubinstein R, Tzuk-Shina T, Gomori JM. Utility of relative cerebral blood volume mapping derived from perfusion magnetic resonance imaging in the routine follow-up of brain tumors. J Neurosurg 1997;86(1):22–27.

    PubMed  CAS  Google Scholar 

  82. Sugahara T, Korogi Y, Tomiguchi S, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 2000;21(5):901–909.

    PubMed  CAS  Google Scholar 

  83. Bitzer M, Klose U, Nagele T, et al. Echo planar perfusion imaging with high spatial and temporal resolution: methodology and clinical aspects. Eur Radiol 1999;9(2):221–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Hammoud, D.A., Pomper, M.G. (2006). Central Nervous System Imaging. In: Chang, A.E., et al. Oncology. Springer, New York, NY. https://doi.org/10.1007/0-387-31056-8_27

Download citation

  • DOI: https://doi.org/10.1007/0-387-31056-8_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-24291-0

  • Online ISBN: 978-0-387-31056-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics