Skip to main content

Interactions Among Artificial Gravity, The Affected Physiological Systems, and Nutrition

  • Chapter
Artificial Gravity

Part of the book series: The Space Technology Library ((SPTL,volume 20))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • .Alfrey CP, Udden MM, Huntoon CL et al.. (1996a) Destruction of newly released red blood cells in space flight. Med Sci Sports Exerc 28: S42-S44

    Google Scholar 

  • Alfrey CP, Udden MM, Leach-Huntoon C et al. (1996b) Control of red blood cell mass in spaceflight. J Appl Physiol 81: 98-104

    Google Scholar 

  • Anand SS (2005) Protective effect of vitamin B6 in chromium-induced oxidative stress in liver. J Appl Toxicol 25: 440-443

    Google Scholar 

  • Arnaud SB, Wolinsky I, Fung P et al. (2000) Dietary salt and urinary calcium excretion in a human bed rest spaceflight model. Aviat Space Environ Med 71: 1115-1119

    Google Scholar 

  • Arnett T (2003) Regulation of bone cell function by acid-base balance. Proc Nutr Soc 62: 511-520

    Google Scholar 

  • Bigard AX, Boussif M, Chalabi H et al. (1998) Alterations in muscular performance and orthostatic tolerance during Ramadan. Aviat Space Environ Med 69: 341-346

    Google Scholar 

  • Biolo G, Ciocchi B, Lebenstedt M et al. (2004) Short-term bed rest impairs amino acid-induced protein anabolism in humans. J Physiol 558: 381-388

    Google Scholar 

  • Biolo G, Declan Fleming RY et al. (1995a) Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest 95: 811-819

    Google Scholar 

  • Biolo G, Maggi SP, Williams BD et al. (1995b) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 268: E514-E520

    Google Scholar 

  • Biolo G, Tipton KD, Klein S et al. (1997) An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol 273: E122-E129

    Google Scholar 

  • Biolo G, Williams BD, Fleming R et al. (1999) Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 48: 949-957

    Google Scholar 

  • Bischoff H, Stahelin HB, Vogt P et al. (1999) Immobility as a major cause of bone remodeling in residents of a long-stay geriatric ward. Calcif Tissue Int 64: 485-489

    Google Scholar 

  • Bischoff-Ferrari HA, Giovannucci E, Willett WC et al. (2006) Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin.Nutr 84: 18-28

    Google Scholar 

  • Blanc S, Normand S, Pachiaudi C et al. (2000) Fuel homeostasis during physical inactivity induced by bed rest. J Clin Endocrinol Metab 85: 2223-2233

    Google Scholar 

  • Booth SL, Tucker KL, Chen H et al. (2000) Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr 71: 1201-1208

    Google Scholar 

  • Bourland CT, Kloeris V, Rice BL et al. (2000) Food systems for space and planetary flights. In: Nutrition in Spaceflight and Weightlessness Models Lane HW, Schoeller DA (eds) CRC Press, Boca Raton, pp. 19-40.

    Google Scholar 

  • Brook RD (2006) Obesity, weight loss, and vascular function. Endocrine. 29: 21-25

    Google Scholar 

  • Bushinsky DA (1994) Acidosis and bone.Miner. Electrolyte Metab 20: 40-52

    Google Scholar 

  • Bushinsky DA, Chabala JM, Gavrilov KL et al. (1999) Effects of in vivo metabolic acidosis on midcortical bone ion composition. Am J Physiol 277: F813-F819

    Google Scholar 

  • Caillot-Augusseau A, Vico L, Heer Met al.(2000) Space Flight Is Associated with Rapid Decreases of Undercarboxylated Osteocalcin and Increases of Markers of Bone Resorption without Changes in Their Circadian Variation: Observations in Two Cosmonauts. Clin Chem 46: 1136-1143

    Google Scholar 

  • Chee WS, Suriah AR, Chan SP et al. (2003) The effect of milk supplementation on bone mineral density in postmenopausal Chinese women in Malaysia. Osteoporos Int 14: 828-834

    Google Scholar 

  • Coburn SP, Lewis DL, Fink WJ et al. (1988) Human vitamin B-6 pools estimated through muscle biopsies. Am J Clin Nutr 48: 291-294

    Google Scholar 

  • Coburn SP, Thampy KG, Lane HW et al. (1995) Pyridoxic acid excretion during low vitamin B-6 intake, total fasting, and bed rest. Am J Clin Nutr 62: 979-983

    Google Scholar 

  • Cumming RG, Nevitt M. (1997) Calcium for prevention of osteoporotic fractures in postmenopausal women. J Bone Miner Res 12: 1321-1329

    Google Scholar 

  • Da Silva MS, Zimmerman PM, Meguid MM et al. (2002) Anorexia in space and possible etiologies: an overview. Nutrition 18: 805-813

    Google Scholar 

  • Dawson-Hughes B, Harris SS, Krall EA et al. (1997) Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 337: 670-676

    Google Scholar 

  • Dickson I, Walls J (1985) Vitamin A and bone formation. Effect of an excess of retinol on bone collagen synthesis in vitro. Biochem J 226: 789-795

    Google Scholar 

  • Drummer C, Hesse C, Baisch F et al. (2000) Water and sodium balances and their relation to body mass changes in microgravity. Eur J Clin Invest 30: 1066-1075

    Google Scholar 

  • Ferrando AA, Lane HW, Stuart CA et al. (1996) Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Physiol 270: E627-E633

    Google Scholar 

  • Ferrando AA, Paddon-Jones D, Wolfe RR (2006) Bed rest and myopathies. Curr Opin Clin Nutr Metab Care 9: 410-415

    Google Scholar 

  • Florian J, Curren M, Baisch F et al. (2004) Caloric restriction decreases orthostatic intolerance. FASEB J 18: 4786

    Google Scholar 

  • Frings P, Baecker N, Boese A et al. (2005) High sodium chloride intake causes mild metabolic acidosis: Is this the reason for increased bone resorption? FASEB J 19: A1345.

    Google Scholar 

  • Grases F, Conte A, Genestar C et al. (1992) Inhibitors of calcium oxalate crystallization and urolithiasis. Urol Int 48: 409-414

    Google Scholar 

  • Grenon SM, Hurwitz S, Sheynberg N et al. (2004) Role of individual predisposition in orthostatic intolerance before and after simulated microgravity. J Appl Physiol 96: 1714-1722

    Google Scholar 

  • Hafidh S, Senkottaiyan N, Villarreal D et al. (2005) Management of the metabolic syndrome. Am J Med Sci 330: 343-351

    Google Scholar 

  • Hart JP, Shearer MJ, Klenerman L et al. (1985) Electrochemical detection of depressed circulating levels of vitamin K1 in osteoporosis. J Clin Endocrinol Metab 60: 1268-1269

    Google Scholar 

  • Hauschka PV, Lian JB, Cole DE et al. (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69: 990-1047

    Google Scholar 

  • Heer M, Baisch F, Kropp J et al. (2000a) High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol 278: F585-F595

    Google Scholar 

  • Heer M, Boerger A, Kamps N et al. (2000b) Nutrient supply during recent European missions. Pflugers Arch 441: R8-R14

    Google Scholar 

  • Heer M, Boese A, Baecker N et al. (2004a) High calcium intake during bed rest does not counteract disuse-induced bone loss. FASEB J 18: 5736

    Google Scholar 

  • Heer M, Boese A, Baecker N et al. (2004b) Moderate hypocaloric nutrition does not exacerbate bone resorption during bed rest. FASEB J 18: 4784

    Google Scholar 

  • Heer M, Kamps N, Biener C et al. (1999) Calcium metabolism in microgravity. Eur J Med Res 4: 357-360

    Google Scholar 

  • Heer M, Mika C, Grzella I et al. (2002) Changes in bone turnover in patients with anorexia nervosa during eleven weeks of inpatient dietary treatment. Clin Chem 48: 754-760

    Google Scholar 

  • Heer M, Mika C, Grzella I et al. (2004c) Bone turnover during inpatient nutritional therapy and outpatient follow-up in patients with anorexia nervosa compared with that in healthy control subjects. Am J Clin Nutr 80: 774-781

    Google Scholar 

  • Heer M, Zittermann A, Hoetzel D (1995) Role of nutrition during long-term spaceflight. Acta Astronautica 35: 297-311

    Google Scholar 

  • Heidelbaugh ND, Vanderveen JE, Iger HG (1968) Development and evaluation of a simplified formula food for aerospace feeding systems. Aerosp Med 39: 38-43

    Google Scholar 

  • Hough S, Avioli LV, Muir H et al. (1988) Effects of hypervitaminosis A on the bone and mineral metabolism of the rat. Endocrinology 122: 2933-2939

    Google Scholar 

  • Igarashi M, Nakazato T, Yajima N et al. (1994) Artificial G-load and chemical changes of saliva. Acta Astronautica 33: 253-257

    Google Scholar 

  • Ihle R, Loucks AB (2004) Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res 19: 1231-1240

    Google Scholar 

  • Ilich JZ, Kerstetter JE (2000) Nutrition in bone health revisited: a story beyond calcium. J Am Coll Nutr 19: 715-737

    Google Scholar 

  • Institute of Medicine (1998) Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic acid, Biotin, and Cholin. National Academies Press, Washington DC

    Google Scholar 

  • Institute of Medicine (2004) Dietray Reference Intakes for Water, potassium, Sodium, Chloride, and Sulfate. National Academies Press, Washington DC

    Google Scholar 

  • Jackson HA, Sheehan AH (2005) Effect of vitamin A on fracture risk. Ann Pharmacother 39: 2086-2090

    Google Scholar 

  • Johnston RS, Dietlein LF (eds) (1975) Biomedical Results of Apollo. NASA, Washington DC, NASA SP-368

    Google Scholar 

  • Johnston RS, Dietlein LF (eds) (1977) Biomedical Results from Skylab. NASA, Washington DC, NASA SP-377

    Google Scholar 

  • Kannan K, Jain SK (2004) Effect of vitamin B6 on oxygen radicals, mitochondrial membrane potential, and lipid peroxidation in H2O2-treated U937 monocytes. Free Radic Biol Med 36: 423-428

    Google Scholar 

  • Kleinman LI, Lorenz JM (1984) Physiology and pathophysiology of body water and electrolytes. In: Clinical Chemistry: Theory, Analysis, and Correlation. Kaplan LA, Pesce AJ (eds) CV Mosby Company, St.Louis, pp 363-386

    Google Scholar 

  • Knapen MH, Hamulyak K, Vermeer C (1989) The effect of vitamin K supplementation on circulating osteocalcin (bone Gla protein) and urinary calcium excretion. Ann Intern Med 111: 1001-1005

    Google Scholar 

  • Knapen MH, Jie KS, Hamulyak K et al. (1993) Vitamin K-induced changes in markers for osteoblast activity and urinary calcium loss. Calcif Tissue Int 53: 81-85

    Google Scholar 

  • Knochel JP (1999) Phosphorus. In: Modern Nutrition in Health and Disease. Shils ME, Oslon JA, Shike M, Ross AC (eds) Lippincott Williams & Wilkins, Baltimore, MD, pp 157-167

    Google Scholar 

  • Kohlmeier L, Hastings SB (1995) Epidemiologic evidence of a role of carotenoids in cardiovascular disease prevention. Am J Clin Nutr 62: 1370S-1376S

    Google Scholar 

  • Kowalchuk JM, Heigenhauser GJ, Jones NL (1984) Effect of pH on metabolic and cardiorespiratory responses during progressive exercise. J Appl Physiol 57: 1558-1563

    Google Scholar 

  • Lane HW, Leblanc AD, Putcha L et al. (1993) Nutrition and human physiological adaptations to space flight. Am J Clin Nutr 58: 583-588

    Google Scholar 

  • Lau EM, Woo J (1998) Nutrition and osteoporosis. Curr Opin Rhumatol 10: 368-372

    Google Scholar 

  • Leach CS (1992) Biochemical and hematologic changes after short-term space flight. Microgravity Quarterly 2: 69-75

    Google Scholar 

  • Leach CS, Rambaut PC (1975) Biochemical observations of long duration manned orbital spaceflight. J Am Med Womens Assoc 30: 153-172

    Google Scholar 

  • Leach CS, Rambaut PC (1977) Biochemical responses of the Skylab crewmen: an overview. In: Biomedical Results from Skylab. Johnston RS, Dietlein LF (eds) US Government Printing Office, Washington DC, NASA SP-377, pp 204-216.

    Google Scholar 

  • Leach-Huntoon CS, Schneider H (1987) Combined blood investigations. In: Results of the Life Sciences DSOs Conducted Aboard the Space Shuttle 1981-1986. Bungo MW, Bagian TM, Bowman MA, Levitan BM (eds) Space Biomedical Research Institute, NASA Johnson Space Center, Houston, pp 7-11

    Google Scholar 

  • LeBlanc A, Schneider V, Shakelford L et al. (2000) Bone mineral and lean tissue loss after long duration space flight. J Muscul Neuron Inter 1: 157-160

    Google Scholar 

  • Lindinger MI, McKelvie RS, Heigenhauser GJ (1995) K+ and Lac- distribution in humans during and after high-intensity exercise: role in muscle fatigue attenuation? J Appl Physiol 78: 765-777

    Google Scholar 

  • Lorenzon S, Ciocchi B, Stulle M et al. (2005) Calorie restriction enhances the catabolic response to bed rest with different kinetic mechanisms. ESPEN Proceedings: OP088

    Google Scholar 

  • Mahfouz MM, Kummerow FA (2004) Vitamin C or Vitamin B6 supplementation prevent the oxidative stress and decrease of prostacyclin generation in homocysteinemic rats. Int J Biochem Cell Biol 36: 1919-1932

    Google Scholar 

  • Maimoun L, Couret I, Mariano-Goulart D et al. (2005) Changes in osteoprotegerin/RANKL system, bone mineral density, and bone biochemicals markers in patients with recent spinal cord injury. Calcif Tissue Int 76: 404-411

    Google Scholar 

  • Martini LA, Cuppari L, Colugnati FA et al. (2000) High sodium chloride intake is associated with low bone density in calcium stone-forming patients. Clin Nephrol 54: 85-93

    Google Scholar 

  • Massey LK (2003) Dietary animal and plant protein and human bone health: a whole foods approach. J Nutr 133: 862S-865S

    Google Scholar 

  • Mattson MP, Wan R (2005) Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem16: 129-137

    Google Scholar 

  • McCartney N, Heigenhauser GJ, Jones NL (1983) Effects of pH on maximal power output and fatigue during short-term dynamic exercise. J Appl Physiol55: 225-229

    Google Scholar 

  • McCormick DB (2001) Vitamin B-6. Present Knowledge in Nutrition. 8th Edition. ILSI Press, Washington DC

    Google Scholar 

  • Meghji S, Morrison MS, Henderson B et al. (2001) pH dependence of bone resorption: mouse calvarial osteoclasts are activated by acidosis. Am J Physiol Endocrinol Metab 280: E112-E119

    Google Scholar 

  • Mikines KJ, Dela F, Tronier B et al. (1989) Effect of 7 days of bed rest on dose-response relation between plasma glucose and insulin secretion. Am J Physiol257: E43-E48

    Google Scholar 

  • Mikines KJ, Richter EA, Dela F et al. (1991) Seven days of bed rest decrease insulin action on glucose uptake in leg and whole body. J Appl Physiol 70: 1245-1254

    Google Scholar 

  • Mitch WE (2006) Metabolic and clinical consequences of metabolic acidosis. J Nephrol 19 Suppl 9: S70-S75

    Google Scholar 

  • Moran MM, Stein TP, Wade CE (2001) Hormonal modulation of food intake in response to low leptin levels induced by hypergravity. Exp Biol Med 226: 740-745

    Google Scholar 

  • Nordin BE, Need AG, Morris HA et al. (1993) The nature and significance of the relationship between urinary sodium and urinary calcium in women. J Nutr123: 1615-1622

    Google Scholar 

  • Padon-Jones D, Sheffield-Moore M, Urban RJ et al. (2004) Essential amino acid and carbohydrate supplementation ameliorates muscle protein loss in humans during 28 days bedrest. J Clin Endocrinol Metab 89: 4351-4358

    Google Scholar 

  • Perez G, Delargy VB (1988) Hypo- and hypekalemia. In: Management of Common Problems in Renal Disease. Preuss HG (ed) Field and Wood Inc, Philadelphia, PA, pp. 109-117

    Google Scholar 

  • Poirier P, Giles TD, Bray GA et al. (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol 26: 968-976

    Google Scholar 

  • Prentice A (2004) Diet, nutrition and the prevention of osteoporosis. Public Health Nutr7: 227-243

    Google Scholar 

  • Preuss HG (2001) Sodium, Chloride and Potassium. In: Present Knowledge in Nutrition. Bowman BA, Russel RM (eds) ILSI Press, Washington, DC, pp 302-310.

    Google Scholar 

  • Putman CT, Jones NL, Heigenhauser GJ (2003) Effects of short-term training on plasma acid-base balance during incremental exercise in man. J Physiol 550: 585-603

    Google Scholar 

  • Rettberg P, Horneck G, Zittermann A et al. (1999) Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis. Adv Space Res22: 1643-1652

    Google Scholar 

  • Riond JL (2001) Animal nutrition and acid-base balance. Eur J Nutr 40: 245-254

    Google Scholar 

  • Ross AC (1999) Vitamin A and retinoids. In: Modern Nutrition in Health and Disease Shils ME, Olson JA, Shike M, Ross AC (eds) Lippincott Williams & Wilkins, Baltimore, MD, pp 305-327

    Google Scholar 

  • Scheven BA, Hamilton NJ (1990) Retinoic acid and 1,25-dihydroxyvitamin D3 stimulate osteoclast formation by different mechanisms. Bone 11: 53-59

    Google Scholar 

  • Shackelford LC, Leblanc AD, Driscoll TB et al. (2004) Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol 97: 119-129

    Google Scholar 

  • Shangraw RE, Stuart CA, Prince MJ et al. (1988) Insulin responsiveness of protein metabolism in vivo following bedrest in humans. Am J Physiol255: E548-E558

    Google Scholar 

  • Sharma AM (2006) The obese patient with diabetes mellitus: from research targets to treatment options. Am J Med119: S17-S23

    Google Scholar 

  • Shearer MJ (1995) Vitamin K. Lancet 345: 229-234

    Google Scholar 

  • Shils ME (2006) Magnesium. In: Modern Nutrition in Health and Disease. Shils ME, Olson JA, Shike M, Ross AC (eds) Lippincott Williams & Wilkins, Baltimore, MD, pp 169-192

    Google Scholar 

  • Smirnov KV, Ugolev AM (1996) Digestion and Absorption. In: Space Biology and Medicine, Humans in Spaceflight. Leach-Huntoon C, Antipov VV, Grigoriev AI (eds) American Institute for Aeronautics and Astronautics, Reston, VA, pp 211-230

    Google Scholar 

  • Smith SM (2002) Red blood cell and iron metabolism during space flight. Nutrition 18: 864-866

    Google Scholar 

  • Smith SM, Davis-Street J, Rice BL et al. (1997) Nutrition in space. Nutr Today 32: 6-12

    Google Scholar 

  • Smith SM, Davis-Street JE, Rice BL et al. (2001) Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans. J Nutr 131: 2053-2061

    Google Scholar 

  • Smith SM, Heer M (2002) Calcium and bone metabolism during space flight. Nutrition18: 849-852

    Google Scholar 

  • Smith SM, Lane HW (1999) Gravity and space flight: effects on nutritional status. Curr Opin Clin Nutr Metab Care 2: 335-338

    Google Scholar 

  • Smith SM, Wastney ME, Morukov BV et al. (1999) Calcium metabolism before, during, and after a 3-mo spaceflight: kinetic and biochemical changes. Am J Physiol 277: R1-10

    Google Scholar 

  • Smith SM, Zwart SR, Block G et al. (2005) The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J Nutr 135: 437-443

    Google Scholar 

  • Smorawinski J, Kaciuba-Uscilko H, Nazar K et al. (2000) Effects of three-day bed rest on metabolic, hormonal and circulatory responses to an oral glucose load in endurance or strength trained athletes and untrained subjects. J Physiol Pharmacol 51: 279-289

    Google Scholar 

  • Smorawinski J, Kubala P, Kaciuba-Uociako H et al. (1996) Effects of three day bed-rest on circulatory, metabolic and hormonal responses to oral glucose load in endurance trained athletes and untrained subjects. J Gravit Physiol3: 44-45

    Google Scholar 

  • Snijder MB, van Schoor NM, Pluijm SM et al. (2006) Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab 91: 2980-2985

    Google Scholar 

  • Sokoll LJ, Booth SL, O’Brien ME et al. (1997) Changes in serum osteocalcin, plasma phylloquinone, and urinary gamma-carboxyglutamic acid in response to altered intakes of dietary phylloquinone in human subjects. Am J Clin Nutr 65: 779-784

    Google Scholar 

  • Srivastava TN, Young DB (1995) Impairment of cardiac function by moderate potassium depletion. J Card Fail 1: 195-200

    Google Scholar 

  • Stuart CA, Shangraw RE, Peters EJ et al. (1990) Effect of dietary protein on bed-rest-related changes in whole-body-protein synthesis. Am J Clin Nutr 52: 509-514

    Google Scholar 

  • Stuart CA, Shangraw RE, Prince MJ et al. (1988) Bed-rest-induced insulin resistance occurs primarily in muscle. Metabolism 37: 802-806

    Google Scholar 

  • Su CJ, Shevock PN, Khan SR et al. (1991) Effect of magnesium on calcium oxalate urolithiasis. J Urol145: 1092-1095

    Google Scholar 

  • Szulc P, Chapuy MC, Meunier PJ et al. (1996) Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture: a three year follow-up study. Bone 18: 487-488

    Google Scholar 

  • Tabata I, Suzuki Y, Fukunaga T et al. (1999) Resistance training affects GLUT-4 content in skeletal muscle of humans after 19 days of head-down bed rest. J Appl Physiol 86: 909-914

    Google Scholar 

  • Takase S, Goda T, Yokogoshi H et al. (1992) Changes in vitamin A status following prolonged immobilization (simulated weightlessness). Life Sci 51: 1459-1466

    Google Scholar 

  • Taysi S (2005) Oxidant/antioxidant status in liver tissue of vitamin B6 deficient rats. Clin Nutr24: 385-389

    Google Scholar 

  • Tessari P, Nosadini R, Trevisan R et al. (1986) Defective suppression by insulin of leucine-carbon appearance and oxidation in type 1, insulin-dependent diabetes mellitus. Evidence for insulin resistance involving glucose and amino acid metabolism. J Clin Invest 77: 1797-1804

    Google Scholar 

  • Udden MM, Driscoll TB, Pickett MH et al. (1995) Decreased production of red blood cells in human subjects exposed to microgravity. J Lab Clin Med 125: 442-449

    Google Scholar 

  • Van der Wiel HE, Lips P et al. (1991) Biochemical parameters of bone turnover during ten days of bed rest and subsequent mobilization. Bone Miner13: 123-129

    Google Scholar 

  • Van Poppel G, Goldbohm RA (1995) Epidemiologic evidence for beta-carotene and cancer prevention. Am J Clin Nutr 62: 1393S-1402S

    Google Scholar 

  • Vergnaud P, Garnero P, Meunier PJ et al. (1997) Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study [see comments]. J Clin Endocrinol Metab 82: 719-724

    Google Scholar 

  • Vermeer C, Hamulyak K (1991) Pathophysiology of vitamin K-deficiency and oral anticoagulants. Thromb Haemost 66: 153-159

    Google Scholar 

  • Vermeer C, Jie KS, Knapen MH (1995) Role of vitamin K in bone metabolism. Ann Rev Nutr15: 1-22

    Google Scholar 

  • Vermeer C, Ulrich MM (1986) The effect of microgravity on plasma-osteocalcin. Adv Space Res 6: 139-142

    Google Scholar 

  • Vermeer C, Wolf J, Craciun AM et al. (1998) Bone markers during a 6-month space flight: Effects of vitamin K supplementation. J Gravit Physiol 5: 66-69

    Google Scholar 

  • Visser M, Deeg DJ, Lips P (2003) Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88: 5766-5772

    Google Scholar 

  • Voziyan PA, Hudson BG (2005) Pyridoxamine: the many virtues of a maillard reaction inhibitor. Ann NY Acad Sci 1043: 807-816

    Google Scholar 

  • Wade CE, Moran MM, Oyama J (2002) Resting energy expenditure of rats acclimated to hypergravity. Aviat Space Environ Med 73: 859-864

    Google Scholar 

  • Warren LE, Hoban-Higgins TM, Hamilton JS et al. (2000) Effects of 2G exposure on lean and genetically obese Zucker rats. J Gravit Physiol 7: 61-69

    Google Scholar 

  • Warren LE, Horwitz BA, Hamilton JS et al. (2001) Effects of 2 G on adiposity, leptin, lipoprotein lipase, and uncoupling protein-1 in lean and obese Zucker rats. J Appl Physiol90: 606-614

    Google Scholar 

  • Watt DG, Money KE, Bondar RL et al. (1985) Canadian medical experiments on Shuttle flight 41-G. Can Aeronaut Space J 31: 215-226

    Google Scholar 

  • Wegmann HM, Baisch F, Schaefer G (1984) Effect of 7 days antiorthostatic bedrest (6r HDT) on insulin responses to oral glucose load. Aviat Space Environ Med 55: 443

    Google Scholar 

  • Yanagibori R, Suzuki Y, Kawakubo K et al. (1997) The effects of 20 days bed rest on serum lipids and lipoprotein concentrations in healthy young subjects. J Gravit Physiol 4: S82-S90

    Google Scholar 

  • Yanagibori R, Suzuki Y, Kawakubo K et al. (1994) Carbohydrate and lipid metabolism after 20 days of bed rest. Acta Physiol Scand Suppl 616: 51-57

    Google Scholar 

  • Zamboni M, Zoico E, Tosoni P et al. (2002) Relation between vitamin D, physical performance, and disability in elderly persons. J Gerontol A Biol Sci Med Sci 57: M7-11

    Google Scholar 

  • Zittermann A, Heer M, Caillot-Augusso A et al. (2000) Microgravity inhibits intestinal calcium absorption as shown by a stable strontium test. Eur J Clin Invest 30: 1036-1043

    Google Scholar 

  • Zwart SR, Hargens AR, Smith SM (2004) The ratio of animal protein intake to potassium intake is a predictor of bone resorption in space flight analogues and in ambulatory subjects. Am J Clin Nutr 80: 1058-1065

    Google Scholar 

  • Zwart SR, Oliver SM (2006) Nutritional status assessment before, during, and after 60 to 90 days of bed rest. Acta Astronautica, in submission

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Heer, M., Baecker, N., Zwart, S., Smith, S. (2007). Interactions Among Artificial Gravity, The Affected Physiological Systems, and Nutrition. In: Clément, G., Bukley, A. (eds) Artificial Gravity. The Space Technology Library, vol 20. Springer, New York, NY. https://doi.org/10.1007/0-387-70714-X_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-70714-X_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-70712-9

  • Online ISBN: 978-0-387-70714-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics