Skip to main content

Algebraic Lessons from the Theory of Quantum Integrable Models

  • Chapter
The Unity of Mathematics

Part of the book series: Progress in Mathematics ((PM,volume 244))

  • 2338 Accesses

Summary

Several examples of quantum systems, obtained after discretization of space-time in the elementary models of conformal field theory, are considered. The algebraic structure of the corresponding algebra of observables and deformation of Virasoro symmetry are discussed and construction of the evolution operator is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Method for solving the Korteweg-de-Vries equation, Phys. Rev. Lett., 19 (1967), 1095–1097.

    Article  MATH  Google Scholar 

  2. V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Phys. JETP, 34 (1972), 62–69.

    MathSciNet  Google Scholar 

  3. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, Hiedelberg, 1987.

    MATH  Google Scholar 

  4. L. D. Faddeev, How the algebraic Bethe Ansatz works for integrable models, in Proceedings of Les Houches Summer School, Session LXIV, NATO ASI Series, Elsevier, Amsterdam, 1998, 149–220.

    Google Scholar 

  5. J.-L. Gervais and A. Neveu, The dual string spectrum in Polyakov’s quantization I, Nuclear Phys. B, 199 (1982), 59–76.

    Article  MathSciNet  Google Scholar 

  6. B. L. Feigin and D. B. Fuks, Verma modules over the Virasoro algebra, Funct. Anal. Appl., 17 (1983), 241.

    Article  MathSciNet  Google Scholar 

  7. E. Witten, Topological sigma model, Comm. Math. Phys., 118 (1988), 411–449.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. P. Novikov, The Hamiltonian formalism and a many valued analogue of Morse theory, Uspekhi Math. Nauk, 37 (1982), 3–49.

    Google Scholar 

  9. L. Faddeev and A. Volkov, Abelian current algebra and the Virasoro algebra on the lattice, Phys. Lett. B, 315 (1993), 311–318.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Faddeev, R. Kashaev, and A. Volkov, Strongly coupled quantum discrete Liouville theory 1: Algebraic approach and duality, Comm. Math. Phys., 219-1 (2001), 199–219.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. D. Faddeev and L. A. Takhtajan, Liouville model on the lattice, in H. J. De Vega and N. Sanchez, eds., Field Theory, Quantum Gravity, and Strings, Lecture Notes in Physics 246, Springer-Verlag, Berlin, New York, Heidelberg, 1986, 166–179.

    Google Scholar 

  12. A. Volkov, Beyond the “pentagon identity,” Lett. Math. Phys., 39 (1997), 393–397.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Alekseev, L. Faddeev, M. Semenov-Tian-Shansky, and A. Volkov, The unravelling of the quantum group structure in the WZNW theory, Preprint CERN-TH-5981/91, CERN, Geneva, 1991.

    Google Scholar 

  14. A. Alekseev, L. Faddeev, and M. Semenov-Tian-Shansky, Hidden quantum group inside Kac-Moody algebra, Comm. Math. Phys., 149 (1992), 335–345.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, Leningrad Math. J., 1 (1990), 193–225; Algebra Anal., 1 (1989), 178–206.

    MATH  MathSciNet  Google Scholar 

  16. A. Alekseev, L. Faddeev, J. Fröhlich, and V. Schomerus, Representation theory of lattice current algebras, Comm. Math. Phys., 191 (1998), 31–60.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Faddeev and A. Volkov, Shift operator for nonabelian lattice current algebra, Publ. Res. Inst. Math. Sci. Kyoto, 40 (2004), 1113–1125.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Faddeev and R. Kashaev, Quantum dilogarithm, Mod. Phys. Lett. A, 9-5 (1994), 427–434.

    Article  MATH  MathSciNet  Google Scholar 

  19. M.-P. Schützenberger, Une interprétation de certaines solutions de l’équation fonctionelle: F(x + y) = F(x)F(y), C. R. Acad. Sci. Paris, 236 (1953), 352–353.

    MATH  MathSciNet  Google Scholar 

  20. I. M. Gelfand and D. B. Fairlie, The algebra of Weyl symmetrized polynomials and its quantum extension, Comm. Math. Phys., 136 (1991), 487–501.

    Article  MathSciNet  Google Scholar 

  21. L. Faddeev, Modular double of a quantum group, Math. Phys. Stud., 21 (2000), 149–156.

    MathSciNet  Google Scholar 

  22. A. Connes, Noncommutative Geometry, Academic Press, New York, 1994.

    MATH  Google Scholar 

  23. A. Yu. Volkov, Noncommutative hypergeometry, Comm. Math. Phys., 258 (2005), 257–273.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Faddeev, L.D. (2006). Algebraic Lessons from the Theory of Quantum Integrable Models. In: Etingof, P., Retakh, V., Singer, I.M. (eds) The Unity of Mathematics. Progress in Mathematics, vol 244. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4467-9_8

Download citation

Publish with us

Policies and ethics