Skip to main content

Solitons as Strange Attractors

  • Conference paper
Nonlinear Waves: Classical and Quantum Aspects

Abstract

We present a detailed study of exploding solitons of the complex cubic-quintic Ginzburg-Landau equation. We show that exploding solitons occur in a vast regions of the parameter space. These are related to the areas where eigenvalues in the linear stability analysis for the ground-state stationary solitons have positive real parts. We also show that this behavior is universal, and that it occurs when we use models with parameter management or add new terms (such as third-order dispersion). The stationary soliton appears to be unstable in these regions and it explodes intermittently, but it attracts the chaotic localized structures around it, thus acting as a ‘strange attractor’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Haus, Theory of mode locking with a fast saturable absorber, J. Appl. Phys., 46, 3049 (1975).

    Article  ADS  Google Scholar 

  2. W. van Saarlos and P. C. Hohenberg, Pulses and fronts in the complex Ginzburg-Landau equation near a subcritical bifurcation, Phys. Rev. Lett., 64, 749 (1990).

    Article  ADS  Google Scholar 

  3. R. J. Deissler and H. Brand, Periodic, quasiperiodic and chaotic localized solitons of the quintic complex Ginzburg-Landau equation, Phys. Rev. Lett., 72, 478 (1994).

    Article  ADS  Google Scholar 

  4. P. Kolodner, Drift, shape, and intrinsic destabilization of pulses of traveling-wave convection, Phys. Rev. A 44, 6448 (1991).

    Article  ADS  Google Scholar 

  5. M. Dennin, G. Ahlers and D. S. Cannell, Chaotic Localized States near the Onset of Electroconvection, Phys. Rev. Lett., 77, 2475 (1996).

    Article  ADS  Google Scholar 

  6. K. G. Müller, Structures at the electrodes of gas discharges, Phys. Rev. A, 37, 4836 (1988).

    Article  ADS  Google Scholar 

  7. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984).

    MATH  Google Scholar 

  8. J. M. Soto-Crespo, N. Akhmediev and A. Ankiewicz, Pulsating, creeping and erupting solitons in dissipative systems, Phys. Rev. Lett. 85, 2937 (2000).

    Article  ADS  Google Scholar 

  9. N. Akhmediev, J. M. Soto-Crespo and G. Town, Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: CGLE approach, Phys. Rev. E, 63 056602 (2001).

    Article  ADS  Google Scholar 

  10. Steven T. Cundiff, J.M. Soto-Crespo and N. Akhmediev, Experimental Evidence for Soliton Explosions, Phys. Rev. Lett., 88, 073903 (2002).

    Article  ADS  Google Scholar 

  11. J. M. Soto-Crespo, N. Akhmediev and V. V. Afanasjev, Stability of the pulse like solutions of the quintic complex Ginzburg-Landau equation, JOSA B, 13, No 7, 1439–1449, (1996).

    Article  ADS  Google Scholar 

  12. N. Akhmediev and J. M. Soto-Crespo, Exploding solitons and Shiľnikov’s Theorem, Phys. Lett. A, 317, 287–292 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kapitula T. Stability criterion for bright solitary waves of the perturbed cubic-quintic Schrödinger equation, Physica D 116, 95–120 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Kapitula T. and Sandstede B. Stability of bright solitary wave solutions to perturbed nonlinear Schrödinger equations, Physica D 124, 58–103 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and beams, Chapman and Hall, London, 1997.

    Google Scholar 

  16. J. M. Soto-Crespo, N. Akhmediev and K. Chiang, Simultaneous existence of a multiplicity of stable and unstable solitons in dissipative systems, Phys. Lett. A., 291, 115–123 (2001)

    Article  ADS  MATH  Google Scholar 

  17. L. P. Shiľnikov, A case of existence of a countable number of periodic motions, Sov. Math. Doklady, 6, 163–166 (1965)

    Google Scholar 

  18. L. P. Shiľnikov, A contribution to the problem of the structure of an extended neighborhood of rough equilibrium state of saddle — focus type, Math. USSR — Sbornik, 10, 91–102 (1970).

    Article  Google Scholar 

  19. C. P. Silva, Shiľnikov’s theorem — a tutorial, IEEE Transactions on circuits and systems, I: Fundamental theory and applications, 40, No 10, 675–682 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Glendinning, Stability, instability and chaos, Cambridge University Press, 1999, p.324.

    Google Scholar 

  21. P. Bergé Y. Pomeau, C. Vidal, Order within chaos, towards a deterministic approach to turbulence, John Wiley & Sons, NY, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A. (2004). Solitons as Strange Attractors. In: Abdullaev, F.K., Konotop, V.V. (eds) Nonlinear Waves: Classical and Quantum Aspects. NATO Science Series II: Mathematics, Physics and Chemistry, vol 153. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2190-9_4

Download citation

Publish with us

Policies and ethics