Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 185))

Abstract

This paper is a review of application of porous silicon to SOI technology. Three main approaches for fabricating the SOI structures based on PS are critically reviewed. We show that there exists renewed interest in all these approaches although SOI technology based on layer transfer with PS as the splitting layer is the dominated method. Patent analysis is presented to reveal new potentialities of porous silicon-based SOI technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Uhlir, Electrolytic shaping of germanium and silicon, Bell Syst. Tech. J. 35(9), 333–337 (1956).

    Google Scholar 

  2. US Patent 3,640,806.

    Google Scholar 

  3. Jap. Patent 49-19019.

    Google Scholar 

  4. US Patent 3,954,523.

    Google Scholar 

  5. US Patent 4,393,577.

    Google Scholar 

  6. S. Tsao, Porous silicon techniques for SOI structures, IEEE Circuit & Device Magazine 3, 3–7 (1987).

    Google Scholar 

  7. V. Bondarenko et al. in: Progress in SOI Structures and Devices Operating at Extreme Conditions, edited by F. Balestra et al. (Kluwer NATO Science Series, 2000), pp.309–327.

    Google Scholar 

  8. US Patents 3,954,523; 4,532,700; 4,627,883; 4,628,591; 4,104,090; 4,628,591; 4,810,667; 5,597,738; 5,686,342; 5,767,561; 5,773,353; 6,506,658.

    Google Scholar 

  9. US Patent Application 20040048437.

    Google Scholar 

  10. US Patent 6,331,456.

    Google Scholar 

  11. US Patents 4,393,577; 4,532,700.

    Google Scholar 

  12. US Patents 5,110,755; 4,910,165.

    Google Scholar 

  13. US Patents 4,849,370; 4,982,263.

    Google Scholar 

  14. K. Imai et al, Crystalline quality of silicon layer formed by FIPOS technology, J. Crystal Growth 63, 547–553 (1983).

    Article  Google Scholar 

  15. K. Imai and H. Unno, FIPOS (Full Isolation by Porous Oxidized Silicon): Technology and Its application to LSI's, IEEE Trans. Electron Dev. ED-31(3), 297–303 (1984).

    Google Scholar 

  16. L. Nesbit, Advances in oxidized porous silicon for SOI, Technical Digest, IEEE International Electron Devices Meeting, Cat. No 84CH2099-0, 800–803 (1984).

    Google Scholar 

  17. K. Barla et al, SOI technology using buried layers of oxidized porous silicon, IEEE Circuits & Device Magazine 3, 11–14 (1987).

    Google Scholar 

  18. V. Bondarenko et al, SOI structures based on oxidized porous silicon, Rus. Microelectron. 23, 61–68 (1994).

    Google Scholar 

  19. V. Bondarenko et al. in: Physical and Technical Problems of SOI structures and Devices, edited by J.P. Colinge et al. (Kluwer NATO Science Series, 1994), pp.275–280.

    Google Scholar 

  20. V. Bondarenko et al, Total gamma dose characteristics of CMOS devices in SOI structures based on oxidized porous silicon, IEEE Transactions on Nuclear Science 44(5), 1719–1723 (1997).

    Article  Google Scholar 

  21. International Patent PCT/IT00/00329.

    Google Scholar 

  22. International Patent PCT/IT00/00330.

    Google Scholar 

  23. International Patent PCT/IT00/00331.

    Google Scholar 

  24. T. Unagami and M. Seki, Structure of porous silicon and heat-treatment effect, J. Electrochem. Soc. 125(8), 1339–1344 (1978).

    Google Scholar 

  25. V. Labunov et al, Process of formation of porous silicon and autoepitaxy on its surface, Rus. Microelektron. 12(1), 11–16 (1983).

    Google Scholar 

  26. H. Takai and T. Itoh, Porous silicon layers and its oxide for the SOI structure, J. Appl. Phys. 60(1), 222–225 (1986).

    Article  Google Scholar 

  27. S. Romanov et al. in: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices, edited by P. Hemment et al. (Kluwer NATO Science Series, 2000), pp. 29–46.

    Google Scholar 

  28. S. Duttagupta and P. Fauchet. in: Properties of Porous Silicon, edited by L. Canham (EMIS datareviews series No18, INSPEC, 1997), pp.132–137.

    Google Scholar 

  29. US Patents 5,250,460; 5,277,748.

    Google Scholar 

  30. N. Sato et al. Epitaxial growth on porous Si for a newbond and etch back silicon-on-insulator, J. Electrochem. Soc. 142, 3116–3122 (1995).

    Google Scholar 

  31. K. Sakaguchi et al. Extremely High selective Etching of Porous Si for Single Etch-Stop Bond-and-Etch-Back Silicon-on-Insulator, Jpn. J. Appl. Phys. 34, 842–847 (1995)

    Article  Google Scholar 

  32. T. Yonehara and K. Sakaguchi. in: Progress in SOI Structures and Devices Operating at Extreme Conditions, edited by F. Balestra et al. (Kluwer NATO Science Series, 2000), pp.39–86.

    Google Scholar 

  33. US Patent Application 20020153595.

    Google Scholar 

  34. US Patent Application 20030008477.

    Google Scholar 

  35. R. Brendel, A novel process for ultrathin monocrystalline silicon solar cells on glass, Proc. 14th European Photovoltaic Solar Energy Conf., 1354–1358 (1997).

    Google Scholar 

  36. http://solar.anu.edu.au/pages/pdfs/review.pdf.

    Google Scholar 

  37. T. Yonehara, Eltran SOI-Epi and SCLIPS by epitaxial layer transfer from porous Si, Extended abstracts Second International Conf. Porous Semiconductors-Science and Technology, 14 (2000).

    Google Scholar 

  38. US Patent Application 20020000242.

    Google Scholar 

  39. US Patent Application 20020096717.

    Google Scholar 

  40. http://www.upv.es/psst_2002.

    Google Scholar 

  41. US Patent: 6,429,091.

    Google Scholar 

  42. US Patent 6, 448,115; 6, 657,258.

    Google Scholar 

  43. US Patents 6,277,703; 6,469,350.

    Google Scholar 

  44. US Patent Application 20030080383.

    Google Scholar 

  45. US Patents 5,455,445; 5,461,001; 5,789,793; 5,767,561.

    Google Scholar 

  46. US Patent 6,376,285; 6,376,859.

    Google Scholar 

  47. US Patent Application 20020086463.

    Google Scholar 

  48. US Patents 5,556,503 and 5,650,042.

    Google Scholar 

  49. US Patents 6,271,101; 6,602,761; 6,037,634.

    Google Scholar 

  50. US Patent Application 20040023448.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Bondarenko, V., Troyanova, G., Balucani, M., Ferrari, A. (2005). Porous Silicon Based SOI: History and Prospects. In: Flandre, D., Nazarov, A.N., Hemment, P.L. (eds) Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment. NATO Science Series II: Mathematics, Physics and Chemistry, vol 185. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3013-4_5

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3013-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3011-6

  • Online ISBN: 978-1-4020-3013-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics