Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

  • 1823 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ulman, A. (1997) Introduction to Ultrathin Organic Films; From Langmuir-Blodgett to Self-Assembly, Academic, San Diego.

    Google Scholar 

  2. Bigelow, W.C., Pickett, D.l., and Zisman, W.A., (1946) Oleophobic monolayers. I. Films adsorbed from solution in nonpolar liquids J. Coll. Sci., 1, 513–518.

    Article  Google Scholar 

  3. Polymeropoulos, E.E. and Sagiv, J. (1978) Electrical conduction through adsorbed monolayers, J. Chem. Phys. 69, 1836–1847.

    Article  ADS  Google Scholar 

  4. Sagiv, J. (1980) Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces J. Am. Chem. Soc. 102, 92–98.

    Article  Google Scholar 

  5. Netzer, L. and Sagiv, J., (1983) A new approach to construction of artificial monolayer assemblies J. Am. Chem. Soc. 105, 674–676.

    Article  Google Scholar 

  6. Maoz, R., Netzer, L., Gun, J., and Sagiv, J., (1988) Self-assembling monolayers in the construction of planned supramolecular structures and as modifiers of surface properties” J. Chim. Phys. 85, 1059–1065.

    Google Scholar 

  7. Maoz, R., Sagiv, J., Degenhardt, D., Mohwald, H., and Quint, P. (1995) Hydrogen-bonded multilayers of self-assembling silanes: structure elucidation by combined Fourier transform infra-red spectroscopy and x-ray scattering techniques, Supramol. Sci. 2, 9–24.

    Article  Google Scholar 

  8. Maoz, R., Matlis, S., Dimasi, E., Ocko, B.M., and Sagiv, J. (1996) Self-replicating amphiphilic monolayers Nature 384, 150–153.

    Article  ADS  Google Scholar 

  9. Maoz, R., Cohen, S.R., and Sagiv, J. (1999) Nanoelectrochemical patterning of monolayer surfaces — towards spatially defined self-assembly of nanostructures, Adv. Mater. 11, 55–61.

    Article  Google Scholar 

  10. Frydman, E., Cohen, H., Maoz, R., and Sagiv, J., (1997) “Monolayer damage in XPS measurements as Evaluated by Independent Methods, Langmuir 13, 5089–5016.

    Article  Google Scholar 

  11. Maoz, R., Cohen, H., Sagiv, J. (1998) Specific Nonthermal Chemical Structural Trnasformation induced by microwaves in a single amphiphilic bilayer self-assembled on silicon, Langmuir 14, 5988–5993.

    Article  Google Scholar 

  12. Lutwyche, M.I. Despont, M. Drechsler, U., Dürig, U., Häberle, W. Rothuizen, H., Stutz, R., Widmer, R., Binnig, G.K., and Vettiger, P. (2000) Highly parallel data storage system based on scanning probe arrays, Appl. Phys. Lett. 77, 3299–3301.

    Article  ADS  Google Scholar 

  13. Michel, B. Bernard, A., Bietsch, A., Delamarche, E. Geissler, M., Juncker, D., Kind, H., Renault, J.-P., Rothuizen, H., Schmid, H., Schmidt-Winkel, P., Stutz, R., Wolf, H. (2001) Printing meets lithography: soft approaches to high resolution patterning, IBM Research Devlop. 45, 697–719.

    Article  Google Scholar 

  14. Liddle, J.A., Harriott, L.R., Novembre A.E., and Waskiewicz, W.K., (1999) SCALPEL: A projection electron-beam approach to sub-optical lithography, Technology Review-Bell Laboratories (available online — http://cm.bell-labs.com/cm/amg/SCALPEL-whitePaper12-99.pdf).

    Google Scholar 

  15. Derra, S. (2001) Can lithography go to the extreme? R&D Research and Development July, 10–16.

    Google Scholar 

  16. Holmes, S. J., Mitchell, P. H., and Hakey M. C. (1997) Manufacturing with DUV lithography, IBM J. Res. Devel. 41, 7–20.

    Article  Google Scholar 

  17. Staufer, U. (1992), in H.-J. Guntherodt and R. Weisendanger (eds.) Scanning Tunneling Microscopy II, Springer-Verlag Berlin, Heidelberg, pp. 273.

    Google Scholar 

  18. Marrian, C.R.K., (1993) The Technology of Proximal Probe Lithography, S.P.I.E., Bellingham, WA., USA.

    Google Scholar 

  19. Mamin, H.J. and Rugar, D. (1992) Thermomechanical writing with an atomic force microscope tip, Appl. Phys. Lett. 61, 1003–1005.

    Article  ADS  Google Scholar 

  20. Eigler, D.M., and Schweizer, E.K. (1990) Positioning single atoms with a scanning tunneling microscope, Nature 344, 524–526.

    Article  ADS  Google Scholar 

  21. Staufer, U., Wiesendanger, R., Eng, L., Rosenthaler, L., Hidber, H.-R. and H.-J. Güntherodt (1988) Surface modification in the naometer range by the scanning tunneling microscope, J. Vac. Sci. Technol. A 6, 537–539.

    Article  ADS  Google Scholar 

  22. Dagata, J.A., Schneir, J., Harary, H.H., Evans. C.J., Postek, M.T. and Bennet, J. (1990) Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air, Appl. Phys. Lett. 56, 2001–2003.

    Article  ADS  Google Scholar 

  23. Day, H.C. and Allee, D.R. (1993) Selective area oxidation of silicon with an atomic force microscope, Appl. Phys. Lett. 62, 2691–2693.

    Article  ADS  Google Scholar 

  24. Snow, E.S., Campbell, P.M., and McMarr, P.J. (1993) Fabrication of silicon nanostructures with a scanning tunneling microscope, Appl. Phys. Lett. 63, 749–751.

    Article  ADS  Google Scholar 

  25. Perkins, F.K., Dobisz, E.A., Brandow, S.L., Kojoski. T.S., Calvert, J.M., Rhee, k.W., Kosakowski, J.E., and Marrian, C.R.K. (1994) Proximal probe study of self-assembled monolayer resist materials, J. Vac. Sci. Technol. B 12, 3725–3729.

    Article  Google Scholar 

  26. Avouris, P., Hertel, T. and Martel, R. (1997) Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication, Appl. Phys. Lett. 71, 285–287.

    Article  ADS  Google Scholar 

  27. Dagata, J.A., (1998) Understanding scanned probe oxidation of silicon, Appl. Phys. Lett. 73, 271–273.

    Article  ADS  Google Scholar 

  28. Garcia, Calleja, Perez-Murano (1998) Local oxidation of silicon surfaces by dynamic force microscopy: Nanofabrication and water bridge formation, Appl. Phys. Lett. 72, 2295–2297.

    Article  ADS  Google Scholar 

  29. Snow, E.S. and Campbell, P.M. (1994) Fabrication of Si nanostructures with an atomic force microscope, Appl. Phys. Lett. 64, 1932–1934.

    Article  ADS  Google Scholar 

  30. Snow, E.S. and Campbell, P.M. (1995) AFM fabrication of sub-10-nanometer metal-oxide devices with in-situ control of electrical properties, Science 270, 1639–1641.

    Article  ADS  Google Scholar 

  31. Pérez-Murano, F., Abadal, G., Barniol, N., Servat, J. Gorostiza, P., and Sanz, F. (1995) Nanometer-scale oxidation of Si(100) surfaces by tapping mode atomic force microscopy, J. App. Phys. 78, 6797–99; Wang, D., Tsau, L. and Wang, K.L. (1994) Nanometer-structure writing on Si(100) surfaces using a non-contact-mode atomic force microscope, Appl. Phys. Lett. 65, 1415–1417.

    Article  ADS  Google Scholar 

  32. See, for instance, Chemical Physics 281 issues 2–3 (2002).

    Google Scholar 

    Google Scholar 

  33. Holmlin, R.E., Haag, R., Chabinye, M.L., Ismagilov, R.F., Cohen, A.E., Terfort, A., Rampi, M.A., and Whitesides, G.M., J. Am. Chem. Soc. (2001) Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers, 123, 5075–5085.

    Article  Google Scholar 

  34. Maoz, R., Frydman, E. Sagiv, J., Cohen, S.R. (2000) “Constructive nanolithography”: site-defined silver self-assembly on nanoelectrochemically patteerned monolayer templates, Adv. Mater. 6, 725–731.

    Article  Google Scholar 

  35. Piner, R.D., Zhu, J., Xu, F., Hong. S. and Mirkin, C.A. (1999) “Dip-Pen nanolithography” Science 283, 661–663.

    Article  Google Scholar 

  36. Maoz, R., Frydman, E., Cohen, S.R., and Sagiv, J. (2000) Constructive nanolithography: inert monolayers as patternable templates for in-situ nanofabrication of metal-semiconductor-organic surface structures — a generic approach, Adv. Mater. 12, 725–731.

    Article  Google Scholar 

  37. Höppener, S., Maoz, R., Cohen, S.R., Chi, L.F., Fuchs, H. and Sagiv, J. (2002) Metal nanoparticles, nanowires and contact electrodes self-assembled on patterned monolayer templates — a bottom-up chemical approach, Adv. Mater. 14, 1036–1041.

    Article  Google Scholar 

  38. Liu, S., Maoz, R., Schmid, G., and Sagiv, J. (2002) Template guided self assembly of [Au55] clusters on nanolithographically defined monolayer patterns, Nanoletters 2, 1055–1060.

    ADS  Google Scholar 

  39. Ederth, T. and Liedberg, B. (2000) Influence of wetting properties on the long-range hydrophobic interaction between self-assembled alkylthiolate monolayers, Langmuir 16 2177–84.

    Article  Google Scholar 

  40. Maoz, R., Frydman, E. Sagiv, J., Cohen, S.R. (2000) “Constructive nanolithography”: site-defined silver self-assembly on nanoelectrochemically patteerned monolayer templates, Adv. Mater. 6, 725–731.

    Article  Google Scholar 

  41. Adamson, A.W. (1990) Physical Chemistry of Surfaces John Wiley and Sons, Toronto.

    Google Scholar 

  42. Good, R.J. (1993) Contact angle, wetting, and adhesion: a critical review in Mittal, K.L. ed., Contact Angle, Wettability and Adhesion VSP, Utrecht, The Netherlands pp 3–37.

    Google Scholar 

  43. Owens, D.K. (1969) Estimation of the surface free energy of polymers, J. Appl. Pol. Sci. 13, 1741–1747.

    Article  Google Scholar 

  44. Frydman, E., Cohen, H. Maoz, R. and Sagiv, J. (1997) Monolayer damage in XPS measurements as evaluated by independent methods, Langmuir 13, 5089–5106.

    Article  Google Scholar 

  45. Pignataro, B., Licciardello, A., Cataldo, S. and Marletta, G. (2003) SPM and TOF-SIMS investigation of the physical and chemical modification induced by tip writing of self-assembled monolayers, Mat. Sci. Eng. C 23, 7–12.

    Google Scholar 

  46. Baptiste, A., Gibaud, A., Bardeau, J.F., Wen, K., Moaz, R. Sagiv, J., and Ocko, B.M. (2002) X-ray, micro-Raman, and infrared spectroscopy structural characterization of self-assembled multilayer silane films with variable numbers of stacked layers Langmuir 18, 3916–3922.

    Article  Google Scholar 

  47. Bowden, F.P., Moore, A.J.W., and Tabor, D., (1943) The ploughing and adhesion of sliding metals J. Appl. Phys. 11, 80–91.

    Article  ADS  Google Scholar 

  48. Warmack, R.J., Zheng, X.-Y., Thunday, T. and Allison, D.P. (1993) Friction effects in the deflection of atomic force microscope cantilevers, Rev. Sci. Instrum. 65, 394–399

    Article  ADS  Google Scholar 

  49. Grafstrom, S., Neitzert, M., Hagen, T., Ackermann, J., Neumann, R., Probst, O., and Wörtge, M., The role of topography and friction for the image contrast in lateral force microscopy, Nanotechnology 4, 143–151.

    Google Scholar 

  50. Spatz, J. P.; Sheiko, S.; Moller, M.; Winkler, R. G.; Reineker, P.; Marti, O. (1997) Tapping scanning force microscopy in air-theory and experiment, Langmuir 13, 4699–4703.

    Article  Google Scholar 

  51. Kühle, A., Sørensen, A.H., and Bohrl, J. (1997) Role of attractive forces in tapping tip force microscopy, J. Appl. Phys. 81, 6562–6569.

    Article  ADS  Google Scholar 

  52. Sugimura, H., Hanji, T., Hayashi, K. and Takai, O. (2002) Surface modification of an organosilane self-assembled monolayer on silicon substrates using atomic force microscopy: scanning probe electrochemistry toward nanolithography, Ultramicroscopy 91, 221–226.

    Article  Google Scholar 

  53. Dai H., Franklin, N. and Han, J. (1998) Exploiting the properties of carbon nanotubes for nanolithography, Appl. Phys. Lett. 73, 1508–1560.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Cohen, S., Maoz, R., Sagiv, J. (2005). Constructive Nanolithography. In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_14

Download citation

Publish with us

Policies and ethics