Skip to main content

How Much Climatic Information Do Water Isotopes Contain?

A systematic comparison between the IAEA/GNIP isotope network and the ECHAM 4 atmospheric general circulation model

  • Chapter
Isotopes in the Water Cycle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bradley, R., Vuille, M., Hardy, D.R, Thompson, L.G. (2003) Low latitude ice core record Pacific sea surface temperatures. Geophysical Research Letters 30(4), 10.1029/2002GL016549.

    Google Scholar 

  • Briffa, K.R., Schweingruber, F.H., Jones, P.D., Osborn, T.J., Shiyatov, S.G., Vaganov, E.A. (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391, 678–682.

    Article  CAS  Google Scholar 

  • Charles, C.D., Rind, D., Jouzel, J., Koster, R.D., Fairbanks, R.G. (1994) Glacial-Interglacial changes in moisture sources for Greenland: Influence on the ice core record of climate. Science 263, 508–511, 1994.

    Google Scholar 

  • Cole, J.E., Rind, D., Webb, R.S., Jouzel, J, Healy, T. (1999) Climatic controls on interannual variability of precipitation δ18O: The simulated influence of temperature, precipitation amount, and vapour source region. J. Geophys. Res. 104, 14,223–14,235.

    Article  Google Scholar 

  • Cole, J.E., Rind, D., Fairbanks, R.G. (1993) Isotopic responses to interannual variability simulated by an AGCM. Quat. Sci. Rev. 12, 387–406.

    Google Scholar 

  • Cuffey, K.M., Clow, G.D., Alley, R.B., Stuiver, M., Washington, E.D., Saltus, R.W. (1998) Large Arctic temperature change at the glacial-holocene transition. Science 270, 445–458.

    Google Scholar 

  • Dahl-Jensen, D., Johnsen, S.J. (1986) Palaeotemperatures still exist in the Greenland ice sheet. Nature 320, 25–252.

    Article  Google Scholar 

  • Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus 16, 436–468.

    Article  Google Scholar 

  • Delaygue, G., Jouzel, J., Masson, V., Koster, R.D, Bard, E. (2000a) Validity of the isotopic thermometer in central Antarctica: limited impact of glacial precipitation seasonality and moisture origin. Geophysical Research Letters 27(17), 2677–2680.

    Article  Google Scholar 

  • Delaygue, G., Masson, V.,V., Jouzel, J. (1999) Climatic stability of the geographic origin of Antarctic precipitation simulated by an atmospheric general circulation model. Annals of Glaciology 29, 45–48.

    Google Scholar 

  • Delaygue, G., Masson, V., Jouzel, J., Koster, R.D., Healy, R.J. (2000b) The origin of Antarctic precipitation: a modelling approach. Tellus 52(B), 19–36.

    Google Scholar 

  • Hoffmann, G. (1995) Wasserisotope im allgemeinen Zirkulationsmodell ECHAM, Universität Hamburg, Hamburg.

    Google Scholar 

  • Hoffmann, G. (2003) Taking the pulse of the tropical water cycle. Science 301, 776–777.

    CAS  Google Scholar 

  • Hoffmann, G., Heimann, G. (1997) Water isotope modeling in the Asian monsoon region. Quat. Int 37, 115–128.

    Google Scholar 

  • Hoffmann, G., Masson, V., Jouzel, J (2000) Stable water isotopes in atmospheric general circulation models. Hydrologic Processes 14, 1385–1406.

    Google Scholar 

  • Hoffmann, G., Ramirez, E. E., Taupin, J.D., Francou, B., Ribstein, P., Delmas, R,. Dürr, H., Gallaire, R., Simôes, J., Schotterer, U., Stievenard, M., Werner, M. (2003) Coherent isotope history of Andean ice cores over the last century. Geophysical Research Letters 30(4), 10.1029/2002GL014870.

    Google Scholar 

  • Hoffmann, G., Werner, M., Heimann, M. (1998) The water isotope module of the ECHAM atmospheric general circulation model-a study on time scales from days to several years. J. Geophys. Res. 103, 16,871–16,896.

    CAS  Google Scholar 

  • Hurrell, J., Trenberth, K. (1999) Global sea surface temperature and analyses: Multiple problems and their implications for climate analysis, modeling, and reanalysis. Bulletin of the American Meteorological Society 80(12), 2661–2678, 1999.

    Article  Google Scholar 

  • International Atomic Energy Agency (1992) Statistical Treatment of Data on Environmental Isotopes in Precipitation. Technical Reports Series No. 331, IAEA, Vienna.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2001) The Science of Climate Change. Report of Working Group 1, Cambridge University Press, Cambridge, UK, available online at www.ipcc.ch.

    Google Scholar 

  • Jones, P.D., Osborn, T.J., Briffa, K.R. (2001) The evolution of climate over the last millenium. Science 292, 662–667.

    Article  CAS  Google Scholar 

  • Joussaume, J. (1983) Modelisation des cycles des espèces isotopiques de l’eau et des aerosols d’origine desertique dans un modèle de circulation générale de l’atmosphère. Université Pierre et Marie Curie, Paris.

    Google Scholar 

  • Joussaume, J., Sadourny, R., Jouzel, J. (1984) A general circulation model of water isotope cycles in the atmosphere. Nature 311, 24–29.

    Article  CAS  Google Scholar 

  • Joussaume, S., Jouzel, J., (1993) Palaeoclimatic tracers: an investigation using an atmospheric general circulation model under ice age conditions, 2, water isotopes. J. Geophys. Res. 98, 2807–2830.

    CAS  Google Scholar 

  • Jouzel, J., Hoffmann, G. Koster. R.D., Masson, V. (2000) Water isotopes in precipitation: Data/model comparison for present-day and past climates. Quaternary Science Review 2000 (19), 363–379.

    Google Scholar 

  • Jouzel, J., Koster. R.D., Suozzo, R.J. Russell, G.L. (1994) Stable water isotope behavior during the Last Glacial Maximum: A general circulation model analysis. J. Geophys. Res. 99, 25791–25801.

    Article  Google Scholar 

  • Jouzel, J., Merlivat, L. (1984) Deuterium and oxygen 18 in precipitation, modelling of the isotopic effects during snow formation. J. Geophys. Res. 89, 11749–11757.

    CAS  Google Scholar 

  • Jouzel, J., Koster, R.D., Suozzo, R.J., Russsel, G.L., White, J.C.W., Broecker, W.S. (1991) Simulations of the HDO and 18O atmospheric cycles using the NASA GISS GCM: Sensitivity experiments for present-day conditions. J. Geophys. Res. 96, 7495–7507.

    Google Scholar 

  • Jouzel, J., Russsel, G.L., Suozzo, R.J., Koster. R.D., White, J.C.W., Broecker, W.S. (1987) Simulations of the HDO and 18O atmospheric cycles using the NASA GISS general circulation model: The seasonal cycle for present-day conditions. J. Geophys. Res. 92, 14739–14760.

    CAS  Google Scholar 

  • Mann, M.E., Bradley, R.S., Hughes, M.K. (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Science 392, 779–787.

    CAS  Google Scholar 

  • Mathieu, R., Pollard, D., Cole, J.E., White, J.W.C, Webb, R.S. (2002) Simulation of stable water isotopes variations by the GENESIS GCM for modern conditions. J. Geophys. Res. 107(D4), doi,10.1029/2001JD900255.

    Google Scholar 

  • Merlivat, L., Jouzel, J., (1979) Global climatic interpretation of the deuterium—oxygen-18 relationship for precipitation. J. Geophys. Res. 84, 5029–5033.

    Article  Google Scholar 

  • Noon, D., Simmonds, I. (2000a) Annular variations in moisture transport mechanisms and the abundance of δ18O in Antarctic snow. J. Geophys. Res. 107(D7), 4742, doi, 10.1029/2002JD002262, 2002a.

    Google Scholar 

  • Noon, D., Simmonds, I., (2000b) Associations between δ18O of water and climate parameters in a simulation of atmospheric circulation for 1979–1995. Journal of Climate 15(22), 3150–3169.

    Google Scholar 

  • Noon, D., Simmonds, I. (2004) The sea-ice control on water isotope transport to Antarctica and implications for ice core interpretation, submitted to J. Geophys. Res.

    Google Scholar 

  • Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Dümenil, L., Esch, M., Giorgetta, M, Schlese, U., Schulzweida, U. (1996) The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate. Max-Planck Institut für Meteorologie, Hamburg.

    Google Scholar 

  • Rozanski, K., Araguas-Araguas, L., Gonfantini, R. (1992) Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science 258, 981–985.

    CAS  Google Scholar 

  • Rozanski, K., Araguas-Araguas, L., Gonfantini, R. (1993) Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records (P.K. Swart, K.C. Lohmann, J. MacKenzie, S. Savin, Eds) AGU, Washington, D.C., 1–3.

    Google Scholar 

  • Severinghaus, J., Sowers, T., Brook, E.J., Alley, R.B., Bender, M.L. (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146.

    Article  CAS  Google Scholar 

  • Vinther, B.M., Johnsen, S.J., Andersen, K.K., Clausen, H.B., Hansen, A.W. (2003) NAO signal recorded in the stable isotopes of Greenland ice cores. Geophysical Research Letters 30(7) 1387, doi,10.1029/2002GL016193.

    Article  CAS  Google Scholar 

  • Vuille, M., Bradley, R., Healy, R., Werner, M., Hardy, D.R., Thompson, L.G., Keimig, F. (2003a) Modelling δ18O in precipitation over the tropical Americas: 2. Simulation of the stable isotope signal in Andean ice cores. J. Geophys. Res. 108(D6), 4175,doi, 10.1029/2001JD002039.

    Google Scholar 

  • Vuille, M., Bradley, R., Werner, M., Healy, R., Keimig, F. (2003b) Modelling δ18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls, J. Geophys. Res. 108(D6), 4174, doi,10.1029/2001JD002038.

    Google Scholar 

  • Werner, M., Heimann, M. (2001) Modelling interannual variability of water isotopes in Greenland and Antarctica, J. Geophys. Res. 107(D1), doi,10.1029/2001JD900253.

    Google Scholar 

  • Werner, M., Heimann, M., Hoffmann, G. (2001) Isotopic composition and origin of polar precipitation in present and glacial climate simulations. Tellus B, 53(1), 53–71, 2001.

    Article  Google Scholar 

  • Werner, M., Mikolajewics, U., Hoffmann, G., Heimann, M. (2000b) Possible changes of δ18O in precipitation caused by a meltwater event in the North Atlantic. J. Geophys. Res. 105(D8), 10,161–10,167.

    Article  CAS  Google Scholar 

  • Werner, M., Mikolayewicz, U., Heimann, M., Hoffmann, G. (2000c) Borehole versus isotope temperatures in Greenland: Seasonality does matter. Geophys. Res. Lett. 27(5), 723–726.

    Article  Google Scholar 

  • White, J.W.C., Barlow, L.K., Fisher, D.A., Grootes, P.M., Jouzel, J., Johnsen, S.J., Stuiver, M., Clausen, H. (1997) The climate signal in the stable isotopes of summit, Greenland snow: results of comparisons with modern climate observations. J. Geophys. Res. 102(C12), 26425–26439.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IEA

About this chapter

Cite this chapter

Hoffmann, G., Cuntz, M., Jouzel, J., Werner, M. (2005). How Much Climatic Information Do Water Isotopes Contain?. In: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. (eds) Isotopes in the Water Cycle. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3023-1_19

Download citation

Publish with us

Policies and ethics