Skip to main content

Hydrologic Process Studies Using Radionuclides Produced by Cosmic Rays

  • Chapter
Isotopes in the Water Cycle
  • 2700 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M.R., Ingram, W.J. (2002) Constraints on future changes in climate and hydrologic cycles. Nature 419, 224–232.

    Google Scholar 

  • Barg, E., Lal, D., Pavich, M.J., Caffee, M.W., Finkel, R.C., Southon, J.R. (1997) Beryllium geochemistry in soil: Evaluation of 10Be/9Be ratios in authigenic minerals as a basis for age models. Chemical Geology 140, 237–258.

    Article  Google Scholar 

  • Baumgartner, S., Beer, J., Suter, M., Dittrich-Hannen, B., Synal, H.-A., Kubik, P.W., Hammer, C., Johnsen, S. (1997) Chlorine-36 fall-out in the Summit Greenland Ice Core Project ice core. J. Geophys. Res. 102(C12) 26659–26662.

    Article  Google Scholar 

  • Begemann, F., Libby, W.F. (1957) Continental water balance, ground water inventory and storage times, surface ocean mixing rates and world-wide circulation patterns from cosmic-ray and bomb tritium. Geochim. Cosmochim. Acta 12, 277–296.

    Article  Google Scholar 

  • Broecker, W.S., Peng, T.H. ( 2000) Comparison of 39Ar and 14C ages for waters in the deep ocean. Nucl. Inst. Methods Physics Res. B, 172, 473–478.

    Google Scholar 

  • Clark, I.D., Fritz, P. (1997). Environmental Isotopes in Hydrogeology. CRC Press LLC, 328.

    Google Scholar 

  • Collon P. and 14 co-authors (2001) 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater. Earth Planet. Sci. Lett. 182, 103–113.

    Google Scholar 

  • Collon P. and 19 co-authors (2003) Developing an AMS method to trace the oceans with 39Ar. Nucl. Instr. Methods Phys. Res. B (in press).

    Google Scholar 

  • Craig H. (1961) Isotopic variations in meteoritic waters. Science 133, 1702–1703.

    Google Scholar 

  • Doney S.C., Jenkins W.J. (1988) Ventilation of the Deep Western Boundary Current and abyssal Western North Atlantic: Estimates from tritium and 3He distributions. J. Phys. Oceanogr. 2, 947–965.

    Google Scholar 

  • Froehlich, K., Franke, T., Gellermann, G., Hebert, D., Jordan, H. (1987) Silicon-32 in different aquifer types and implications for groundwater dating. Isotopic Techniques in Water Resource Development, (Proc. Symp. 1987), IAEA, Vienna, 149–163.

    Google Scholar 

  • Gosse, J.C., Phillips, F.M. (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Sci. Rev. 20, 1475–1560.

    Article  Google Scholar 

  • Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, P.A. (1998) Neoproterozoic snowball Earth. Science 281, 1342–1346. See also Hyde, W.T., Crowley, T.J., Baum, S.K., Peltier, W.R. (2001) Life Geology and snowball Earth. Nature 409, 306.

    Article  Google Scholar 

  • International Atomic Energy Agency (1992) Isotopes of Noble Gases as Tracers in Environmental Studies, (Proc. Meeting Vienna, 29 May–2 June 1989). IAEA, Vienna, 305.

    Google Scholar 

  • Jenkins, W.J., Clarke, W. (1976) The distribution of 3He in the western Atlantic Ocean. Deep-Sea Res. 23, 481–494.

    Google Scholar 

  • Jenkins W.J. (1988) The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation. Phil. Trans. R. Soc. Lond. A 32, 43–61.

    Google Scholar 

  • Kusakabe, M., Ku, T.L., Vogel, J., Southon, J.R., Nelson, D.E., Richards, J. (1982) 10Be profiles in sea water. Nature 299, 712–714.

    Article  Google Scholar 

  • Lal, D., Peters, B. (1967) Cosmic ray produced radioactivity on the earth. Handbuch der Physik. Springer-Verlag, Berlin, 46/2, 551–612.

    Google Scholar 

  • Lal, D., Nijampurkar, V.N., Rama, S. (1970) Silicon-32 hydrology. Isotope Hydrology (Proc. Symp. IAEA, Vienna, Mar. 9–13, 1970) 847–868.

    Google Scholar 

  • Lal, D., Chung, Y., Platt, T., Lee, T.(1988) Twin cosmogenic radiotracer studies of phosphorus recycling and chemical fluxes in the upper ocean. Limnol. Oceanogr. 33, 1559–1567.

    Article  Google Scholar 

  • Lal, D. (1988) In-situ produced cosmogenic isotopes in terrestrial rocks. Ann. Rev. Earth Planet. Sci. 16, 355–388.

    Google Scholar 

  • Lal, D. (1991) Cosmic ray tagging of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet. Sci. Lett. 104, 424–439.

    Article  Google Scholar 

  • Lal, D., Pavich, M., Gu, Z.Y., Jull, A.J.T., Caffee, M., Finkel, R., Southon, J. (1996) Recent erosional history of a soil profile based on cosmogenic in-situ radionuclides 14C and 10Be. Geophys. Monograph Ser. A (A Basu, S. Hart, Eds) 95, 371–376.

    Google Scholar 

  • Lal, D. (1999) An overview of five decades of studies of cosmic ray produced nuclides in oceans. The Science of Total Environment 237/238, 3–13.

    Google Scholar 

  • Lal, D. (2001) New nuclear methods for studies of soil dynamics utilizing cosmic ray produced radionuclides, Proc. 10th Int. Soil Conservation Organization Conference, 1999 (D.E. Stott, R.H. Mohr, G.C. Steinhardt, Eds) Purdue University, W. Lafayette, IN, 1044–1052.

    Google Scholar 

  • Lal, D., Inloth, S. (2003) Applications of cosmogenic radionuclides for determining groundwater flow, with special reference to 32Si and 10Be. (In preparation).

    Google Scholar 

  • Lean, J., Beer, J., Bradley, R. (1995) Reconstruction of Solar Irradiance since 1610-Implications for Climate Change. Geophys. Res. Lett. 22, 3195–3198.

    Google Scholar 

  • Loosli, H. (1983) A dating method with 39Ar. Earth Planet. Sci. Lett. 63, 51–62.

    Article  Google Scholar 

  • Measures, C.I., Edmond, J.M. (1982) Beryllium in the water column of the Central Pacific. Nature 297, 51–53.

    Article  Google Scholar 

  • Morgenstern, U., Geyh, M.A., Kudrass, H.R., Ditchburn, R.G., Graham, I.J. (2001) 32Si dating of marine sediments from Bangladesh. Radiocarbon 43 (No. 2w) 909–916.

    Google Scholar 

  • Nijampurkar, V.N., Amin, B.S., Kharkar, D.P, Lal, D. (1966) “Dating” ground waters of ages younger than 1,000–1,500 years using natural Silicon-32. Nature 210, 478–480.

    Google Scholar 

  • Pang, K.D., Yau, K.K. (2002) Ancient observations link changes in Sun’s brightness and earth’s climate. Eos. Am. Geophys. Union 83, 489–490.

    Google Scholar 

  • Peixoto, J.P., Oort, A.H. (1992) Physics of Climate, American Institute of Physics, New York. Chapter 12, 270–307.

    Google Scholar 

  • Phillips, F.M. (1994) Environmental tracers for water movement in desert soils of the American Southwest. Soil Science Soc. Am. J. 58, 15–24.

    Google Scholar 

  • Phillips, F.M. (1995) The Use of Isotopes and Environmental Tracers in Subsurface Hydrology. Rev. Geophys. Suppl. (U. S. Natl. Report to Int. Union Geodesy and Geophys. 1991–1994) Pub. Amer. Geophys. Union. July, 1955, 1029–1033.

    Google Scholar 

  • Pierrehumbert, R.T.(2002) The hydrologic cycle in deep climate problems, Nature 419, 191–198.

    Google Scholar 

  • Schlitzer, R., Roether, W., Weidmann, U., Kalt, P., Loosli H.H. (1985) A meridional 14C and 39Ar section in northeast Atlantic deep water. J. Geophys. Res. 90(C4) 6945–6952.

    Google Scholar 

  • Schlosser. P., Kromer, B., Weppernig, R., Loosli, H.H., Bayer, R., Bonani, G., Suter M. (1994) The distribution of 14C and 39Ar in the Weddel Sea. J. Geophys. Res. 99(C5), 10275–10287.

    Article  Google Scholar 

  • Schlosser, P., Bönisch G., Kromer B., Loosli, H.H., Bühler, B., Bayer, R., Bonani, G., Koltermann, KP. (1995). Mid 1980s distribution of tritium, 3He, 14C and 39Ar in the Greenland/Norwegian seas and the Nansen Basin of the Arctic Ocean. Progress in Oceanography, 35, 1–28.

    Article  Google Scholar 

  • Stuiver, M. and 9 co-authors (1998) INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40(3), 1041–1083.

    Google Scholar 

  • Stuiver, M., Braziunas, T.F. (1989) Atmospheric 14C and century scale oscillations. Nature 338, 405–408.

    Article  Google Scholar 

  • Yiou, F., Raisbeck, G.M., Baumgartner, S., Beer, J., Hammer, C., Johnsen, S., Jouzel, J., Kubik, P.W., Lestringuez, J., Stievenard, M., Suter, M., Yiou, P. (1997) Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland. J. Geophys. Res. 102(C12) 26, 83-26, 94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IEA

About this chapter

Cite this chapter

Lal, D. (2005). Hydrologic Process Studies Using Radionuclides Produced by Cosmic Rays. In: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. (eds) Isotopes in the Water Cycle. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3023-1_3

Download citation

Publish with us

Policies and ethics