Skip to main content

Current and Future Therapeutic Targets of the Tumour-Host Microenvironment

  • Chapter
Integration/Interaction of Oncologic Growth

Part of the book series: Cancer Growth and Progression ((CAGP,volume 15))

  • 497 Accesses

Abstract

The search for effective cancer therapies is one of the foremost priorities of modern-day research. In recent times, enormous strides have been made in the understanding of the molecular events that underlie cancer progression and in the development of promising therapies against relevant molecular targets. The molecular signalling pathways that modulate tumourigenesis, especially those involved in cell migration and adhesion are logical foci for molecular intervention. Angiogenesis is a validated target from which combination approaches are now being entertained, and agents against new and known targets are under development. Further advances are needed to use these agents to their best advantage and to demonstrate proof of concept of the target. To that end, new technologies are being developed and applied to patient trials. The local microenvironment and the tumour-host interface are dynamic areas that are understudied as therapeutic directions. Stromal therapy, focused to the paracrine interactions at the microenvironmental level is an important new direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liotta, L. A., and Kohn, E. C., 2001, The microenvironment of the tumour-host interface. Nature, 411:375–379.

    Article  PubMed  Google Scholar 

  2. Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G., 1991, Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell, 64:327–336.

    Article  PubMed  Google Scholar 

  3. Stetler-Stevenson, W. G., Aznavoorian, S., and Liotta, L. A., 1993, Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol, 9:541–573.

    Article  Google Scholar 

  4. Longhurst, C. M., and Jennings, L. K., 1998, Integrin-mediated signal transduction. Cell Mol Life Sci, 54:514–526.

    Article  PubMed  Google Scholar 

  5. Pece, S., and Gutkind, J. S., 2000, Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem, 275:41227–41233.

    Article  PubMed  Google Scholar 

  6. Hubbard, A. K., and Rothlein, R., 2000, Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med, 28:1379–1386.

    Article  PubMed  Google Scholar 

  7. Anand-Apte, B., and Zetter, B., 1997, Signaling mechanisms in growth factor-stimulated cell motility. Stem Cells, 15:259–267.

    PubMed  Google Scholar 

  8. Wells, A., 1999, EGF receptor. Int J Biochem Cell Biol, 31:637–643.

    PubMed  Google Scholar 

  9. Friedl, P., and Brocker, E. B., 2000, The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci, 57:41–64.

    Article  PubMed  Google Scholar 

  10. Petruzzelli, L., Herrera, R., and Rosen, O. M., 1984, Insulin receptor is an insulin-dependent tyrosine protein kinase: copurification of insulin-binding activity and protein kinase activity to homogeneity from human placenta. Proc Natl Acad Sci U S A, 81:3327–3331.

    PubMed  Google Scholar 

  11. Downward, J., Waterfield, M. D., and Parker, P. J., 1985, Autophosphorylation and protein kinase C phosphorylation of the epidermal growth factor receptor. Effect on tyrosine kinase activity and ligand binding affinity. J Biol Chem, 260:14538–14546.

    PubMed  Google Scholar 

  12. Claesson-Welsh, L., 1994, Signal transduction by the PDGF receptors. Prog Growth Factor Res, 5:37–54.

    Article  PubMed  Google Scholar 

  13. Pawson, T., 2002, Regulation and targets of receptor tyrosine kinases. Eur J Cancer, 38Suppl 5: S3–10.

    Article  Google Scholar 

  14. Mendelsohn, J. and Baselga, J., 2003, Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol, 21:2787–2799.

    Article  Google Scholar 

  15. Baselga, J., 2002, Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist, 7Suppl 4:2–8.

    PubMed  Google Scholar 

  16. Ciardiello, F., and Tortora, G., 2001, A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res, 7:2958–2970.

    PubMed  Google Scholar 

  17. Fay, F. S., Gilbert, S. H., and Brundage, R. A., 1995, Calcium signalling during chemotaxis. Ciba Found Symp, 188:121–135; discussion 136–140.

    PubMed  Google Scholar 

  18. Huang, J. B., Kindzelskii, A. L., Clark, A. J., and Petty, H. R., 2004, Identification of channels promoting calcium spikes and waves in HT1080 tumor cells: their apparent roles in cell motility and invasion. Cancer Res, 64:2482–2489.

    Article  PubMed  Google Scholar 

  19. Lee, J., Ishihara, A., Oxford, G., Johnson, B., and Jacobson, K., 1999, Regulation of cell movement is mediated by stretch-activated calcium channels. Nature, 400:382–386.

    Article  PubMed  Google Scholar 

  20. Munevar, S., Wang, Y. L., and Dembo, M., 2001, Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration. Mol Biol Cell, 12:3947–3954.

    PubMed  Google Scholar 

  21. Webb, D. J., Donais, K., Whitmore, L. A., Thomas, S. M., Turner, C. E., Parsons, J. T., and Horwitz, A. F., 2004, FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol, 6:154–161.

    Article  PubMed  Google Scholar 

  22. Chan, A. Y., Raft, S., Bailly, M., Wyckoff, J. B., Segall, J. E., and Condeelis, J. S., 1998, EGF stimulates an increase in actin nucleation and filament number at the leading edge of the lamellipod in mammary adenocarcinoma cells. J Cell Sci, 111 (Pt 2):199–211.

    PubMed  Google Scholar 

  23. Azuma, T., Witke, W., Stossel, T. P., Hartwig, J. H., and Kwiatkowski, D. J., 1998, Gelsolin is a downstream effector of rac for fibroblast motility. Embo J, 17:1362–1370.

    Article  PubMed  Google Scholar 

  24. Fujiwara, H., Gu, J., and Sekiguchi, K., 2004, Rac regulates integrin-mediated endothelial cell adhesion and migration on laminin-8. Exp Cell Res, 292:67–77.

    Article  PubMed  Google Scholar 

  25. Ridley, A. J., 2001, Rho GTPases and cell migration. J Cell Sci, 114:2713–2722.

    PubMed  Google Scholar 

  26. Lauffenburger, D. A., and Horwitz, A. F., 1996, Cell migration: a physically integrated molecular process. Cell, 84:359–369.

    Article  PubMed  Google Scholar 

  27. Wehrle-Haller, B., and Imhof, B., 2002, The inner lives of focal adhesions. Trends Cell Biol, 12:382–389.

    Article  PubMed  Google Scholar 

  28. Schlaepfer, D. D., and Hunter, T., 1996, Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol, 16:5623–5633.

    PubMed  Google Scholar 

  29. Schaller, M. D., 2001, Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta, 1540:1–21.

    Article  Google Scholar 

  30. Sieg, D. J., Hauck, C. R., Ilic, D., Klingbeil, C. K., Schaefer, E., Damsky, C. H., and Schlaepfer, D. D., 2000, FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol, 2:249–256.

    Article  PubMed  Google Scholar 

  31. Sieg, D. J., Hauck, C. R., and Schlaepfer, D. D., 1999, Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J Cell Sci, 112 (Pt 16):2677–2691.

    PubMed  Google Scholar 

  32. Frisch, S. M., and Francis, H., 1994, Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol, 124:619–626.

    Article  PubMed  Google Scholar 

  33. Horiguchi, A., Oya, M., Uchida, A., Marumo, K., and Murai, M., 2003, Elevated Akt activation and its impact on clinicopathological features of renal cell carcinoma. J Urol, 169:710–713.

    Article  PubMed  Google Scholar 

  34. Itoh, N., Semba, S., Ito, M., Takeda, H., Kawata, S., and Yamakawa, M., 2002, Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer, 94:3127–3134.

    Article  PubMed  Google Scholar 

  35. Shindoh, M., Adachi, M., Higashino, F., Yasuda, M., Hida, K., Nishioka, T., Ono, M., Takayama, S., Reed, J. C., Imai, K., Totsuka, Y., and Kohgo, T., 2000, BAG-1 expression correlates highly with the malignant potential in early lesions (T1 and T2) of oral squamous cell carcinoma. Oral Oncol, 36:444–449.

    Article  PubMed  Google Scholar 

  36. Sun, H. Q., Yamamoto, M., Mejillano, M., and Yin, H. L., 1999, Gelsolin, a multifunctional actin regulatory protein. J Biol Chem, 274:33179–33182.

    Article  PubMed  Google Scholar 

  37. Chou, J., Stolz, D. B., Burke, N. A., Watkins, S. C., and Wells, A., 2002, Distribution of gelsolin and phosphoinositol 4,5-bisphosphate in lamellipodia during EGF-induced motility. Int J Biochem Cell Biol, 34:776–790.

    Article  PubMed  Google Scholar 

  38. Sakisaka, T., Itoh, T., Miura, K., and Takenawa, T., 1997, Phosphatidylinositol 4,5-bisphosphate phosphatase regulates the rearrangement of actin filaments. Mol Cell Biol, 17:3841–3849.

    PubMed  Google Scholar 

  39. Mooseker, M. S., Coleman, T. R., and Conzelman, K. A., 1986, Calcium and the regulation of cytoskeletal assembly, structure and contractility. Ciba Found Symp, 122:232–249.

    PubMed  Google Scholar 

  40. Rodland, K. D., Wersto, R. P., Hobson, S., and Kohn, E. C., 1997, Thapsigargin-induced gene expression in nonexcitable cells is dependent on calcium influx. Mol Endocrinol, 11:281–291.

    Article  PubMed  Google Scholar 

  41. Gliki, G., Wheeler-Jones, C., and Zachary, I., 2002, Vascular endothelial growth factor induces protein kinase C (PKC)-dependent Akt/PKB activation and phosphatidylinositol 3′-kinase-mediates PKC delta phosphorylation: role of PKC in angiogenesis. Cell Biol Int, 26:751–759.

    Article  PubMed  Google Scholar 

  42. Amin, A. R., Ichigotani, Y., Oo, M. L., Biswas, M. H., Yuan, H., Huang, P., Mon, N. N., and Hamaguchi, M., 2003, The PLC-PKC cascade is required for IL-1beta-dependent Erk and Akt activation: their role in proliferation. Int J Oncol, 23:1727–1731.

    PubMed  Google Scholar 

  43. Legg, J. W., Lewis, C. A., Parsons, M., Ng, T., and Isacke, C. M., 2002, A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nat Cell Biol, 4:399–407.

    Article  PubMed  Google Scholar 

  44. Ng, T., Parsons, M., Hughes, W. E., Monypenny, J., Zicha, D., Gautreau, A., Arpin, M., Gschmeissner, S., Verveer, P. J., Bastiaens, P. I., and Parker, P. J., 2001, Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. Embo J, 20:2723–2741.

    Article  PubMed  Google Scholar 

  45. Zhang, M. I. and O'Neil, R. G., 2001, Kinetics of activation of a PKC-regulated epithelial calcium channel. Cell Calcium, 29:263–275.

    Article  PubMed  Google Scholar 

  46. Deucher, A., Efimova, T., and Eckert, R. L., 2002, Calcium-dependent involucrin expression is inversely regulated by protein kinase C (PKC) alpha and PKCdelta. J Biol Chem, 277:17032–17040.

    Article  PubMed  Google Scholar 

  47. Kamat, A., and Carpenter, G., 1997, Phospholipase C-gamma1: regulation of enzyme function and role in growth factor-dependent signal transduction. Cytokine Growth Factor Rev, 8:109–117.

    Article  PubMed  Google Scholar 

  48. Chen, W. T., 1981, Mechanism of retraction of the trailing edge during fibroblast movement. J Cell Biol, 90:187–200.

    Article  PubMed  Google Scholar 

  49. Giannone, G., Ronde, P., Gaire, M., Haiech, J., and Takeda, K., 2002, Calcium oscillations trigger focal adhesion disassembly in human U87 astrocytoma cells. J Biol Chem, 277:26364–26371.

    Article  PubMed  Google Scholar 

  50. Regen, C. M., and Horwitz, A. F., 1992, Dynamics of beta 1 integrin-mediated adhesive contacts in motile fibroblasts. J Cell Biol, 119:1347–1359.

    Article  PubMed  Google Scholar 

  51. Glading, A., Bodnar, R. J., Reynolds, I. J., Shiraha, H., Satish, L., Potter, D. A., Blair, H. C., and Wells, A., 2004, Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol, 24:2499–2512.

    Article  PubMed  Google Scholar 

  52. Carragher, N. O., Fincham, V. J., Riley, D., and Frame, M. C., 2001, Cleavage of focal adhesion kinase by different proteases during SRC-regulated transformation and apoptosis. Distinct roles for calpain and caspases. J Biol Chem, 276:4270–4275.

    Article  PubMed  Google Scholar 

  53. Xie, H., Pallero, M. A., Gupta, K., Chang, P., Ware, M. F., Witke, W., Kwiatkowski, D. J., Lauffenburger, D. A., Murphy-Ullrich, J. E., and Wells, A., 1998, EGF receptor regulation of cell motility: EGF induces disassembly of focal adhesions independently of the motility-associated PLCgamma signaling pathway. J Cell Sci, 111 (Pt 5):615–624.

    PubMed  Google Scholar 

  54. Valentinis, B., Morrione, A., Peruzzi, F., Prisco, M., Reiss, K., and Baserga, R., 1999, Anti-apoptotic signaling of the IGF-I receptor in fibroblasts following loss of matrix adhesion. Oncogene, 18:1827–1836.

    Article  PubMed  Google Scholar 

  55. He, Z., Ismail, A., Kriazhev, L., Sadvakassova, G., and Bateman, A., 2002, Progranulin (PC-cell-derived growth factor/acrogranin) regulates invasion and cell survival. Cancer Res, 62:5590–5596.

    PubMed  Google Scholar 

  56. Liu, X. W., Bernardo, M. M., Fridman, R., and Kim, H. R., 2003, Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells against intrinsic apoptotic cell death via the focal adhesion kinase/phosphatidylinositol 3-kinase and MAPK signaling pathway. J Biol Chem, 278:40364–40372.

    Article  PubMed  Google Scholar 

  57. Mills, G. B., and Moolenaar, W. H., 2003, The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer, 3:582–591.

    Article  PubMed  Google Scholar 

  58. Zhang, X., Chattopadhyay, A., Ji, Q. S., Owen, J. D., Ruest, P. J., Carpenter, G., and Hanks, S. K., 1999, Focal adhesion kinase promotes phospholipase C-gamma1 activity. Proc Natl Acad Sci USA, 96:9021–9026.

    Article  PubMed  Google Scholar 

  59. Tamura, M., Gu, J., Danen, E. H., Takino, T., Miyamoto, S., and Yamada, K. M., 1999, PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem, 274:20693–20703.

    Article  PubMed  Google Scholar 

  60. Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., Bigner, S. H., Giovanella, B. C., Ittmann, M., Tycko, B., Hibshoosh, H., Wigler, M. H., and Parsons, R., 1997, PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 275:1943–1947.

    Article  Google Scholar 

  61. Tanaka, M., and Grossman, H. B., 2003, In vivo gene therapy of human bladder cancer with PTEN suppresses tumor growth, downregulates phosphorylated Akt, and increases sensitivity to doxorubicin. Gene Ther, 10:1636–1642.

    Article  PubMed  Google Scholar 

  62. Lu, Y., Lin, Y. Z., LaPushin, R., Cuevas, B., Fang, X., Yu, S. X., Davies, M. A., Khan, H., Furui, T., Mao, M., Zinner, R., Hung, M. C., Steck, P., Siminovitch, K., and Mills, G. B., 1999, The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene, 18:7034–7045.

    Article  PubMed  Google Scholar 

  63. Krymskaya, V. P., Hoffman, R., Eszterhas, A., Kane, S., Ciocca, V., and Panettieri, R. A., Jr., 1999, EGF activates ErbB-2 and stimulates phosphatidylinositol 3-kinase in human airway smooth muscle cells. Am J Physiol, 276:L246–255.

    PubMed  Google Scholar 

  64. Marmor, M. D., Skaria, K. B., and Yarden, Y., 2004, Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys, 58:903–913.

    Article  PubMed  Google Scholar 

  65. Ivaska, J., and Heino, J., 2000, Adhesion receptors and cell invasion: mechanisms of integrin-guided degradation of extracellular matrix. Cell Mol Life Sci, 57:16–24.

    Article  PubMed  Google Scholar 

  66. Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., and Horwitz, A. R., 2003, Cell migration: integrating signals from front to back. Science, 302:1704–1709.

    Article  PubMed  Google Scholar 

  67. Wary, K.K., Mainiero, F., Isakoff, S.J., Marcantonio, E.E., and Giancotti, F.G., 1996, The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell, 87:733–743.

    Article  PubMed  Google Scholar 

  68. Lollo, B.A., Chan, K.W., Hanson, E.M., Moy, V.T., and Brian, A.A., 1993, Direct evidence for two affinity states for lymphocyte function-associated antigen 1 on activated T cells. J Biol Chem, 268:21693–21700.

    PubMed  Google Scholar 

  69. Kim, S., Bell, K., Mousa, S. A., and Varner, J. A., 2000, Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol, 156:1345–1362.

    PubMed  Google Scholar 

  70. Jin, H., and Varner, J., 2004, Integrins: roles in cancer development and as treatment targets. Br J Cancer, 90: 61–565.

    Article  Google Scholar 

  71. Sawyer, T.K., 2004, Cancer metastasis therapeutic targets and drug discovery: emerging small-molecule protein kinase inhibitors. Expert Opin Investig Drugs, 13:1–19.

    Article  PubMed  Google Scholar 

  72. Stetler-Stevenson, W.G., 1999, Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest, 103:1237–1241.

    PubMed  Google Scholar 

  73. Stetler-Stevenson, W.G. and Yu, A.E., 2001, Proteases in invasion: matrix metalloproteinases. Semin Cancer Biol, 11:143–152.

    Article  Google Scholar 

  74. Johansson, N., Ahonen, M., and Kahari, V. M., 2000, Matrix metalloproteinases in tumor invasion. Cell Mol Life Sci, 57:5–15.

    Article  PubMed  Google Scholar 

  75. Pendas, A. M., Knauper, V., Puente, X. S., Llano, E., Mattei, M. G., Apte, S., Murphy, G., and Lopez-Otin, C., 1997, Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J Biol Chem, 272:4281–4286.

    Article  PubMed  Google Scholar 

  76. Lynch, C. C. and Matrisian, L. M., 2002, Matrix metalloproteinases in tumor-host cell communication. Differentiation, 70:561–573.

    Article  PubMed  Google Scholar 

  77. Brown, M. R., Blanchette, J. O., and Kohn, E. C., 2000, Angiogenesis in ovarian cancer. Baillieres Best Pract Res Clin Obstet Gynaecol, 14:901–918.

    Article  Google Scholar 

  78. Kerkela, E. and Saarialho-Kere, U., 2003, Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol, 12:109–125.

    Article  Google Scholar 

  79. Fingleton, B., 2003, Matrix metalloproteinase inhibitors for cancer therapy: the current situation and future prospects. Expert Opin Ther Targets, 7:385–397.

    Article  PubMed  Google Scholar 

  80. Freije, J. M., Balbin, M., Pendas, A. M., Sanchez, L. M., Puente, X. S., and Lopez-Otin, C., 2003, Matrix metalloproteinases and tumor progression. Adv Exp Med Biol, 532:91–107.

    PubMed  Google Scholar 

  81. Burridge, K. and Wennerberg, K., 2004, Rho and Rac take center stage. Cell, 116:167–179.

    Article  PubMed  Google Scholar 

  82. Karnoub, A. E., Symons, M., Campbell, S. L., and Der, C. J., 2004, Molecular Basis for Rho GTPase Signaling Specificity. Breast Cancer Res Treat, 84:61–71.

    Article  PubMed  Google Scholar 

  83. Li, Z., Hannigan, M., Mo, Z., Liu, B., Lu, W., Wu, Y., Smrcka, A. V., Wu, G., Li, L., Liu, M., Huang, C. K., and Wu, D., 2003, Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42. Cell, 114:215–227.

    Article  PubMed  Google Scholar 

  84. Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., Strongin, A. Y., Brocker, E. B., and Friedl, P., 2003, Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol, 160:267–277.

    Article  PubMed  Google Scholar 

  85. Barnes, C. J., Bagheri-Yarmand, R., Mandal, M., Yang, Z., Clayman, G. L., Hong, W. K., and Kumar, R., 2003, Suppression of epidermal growth factor receptor, mitogen-activated protein kinase, and Pak1 pathways and invasiveness of human cutaneous squamous cancer cells by the tyrosine kinase inhibitor ZD1839 (Iressa). Mol Cancer Ther, 2:345–351.

    PubMed  Google Scholar 

  86. Kelly, K., and Averbuch, S., 2004, Gefitinib: phase II and III results in advanced non-small cell lung cancer. Semin Oncol, 31:93–99.

    Article  Google Scholar 

  87. Tiseo, M., Loprevite, M., and Ardizzoni, A., 2004, Epidermal growth factor receptor inhibitors: a new prospective in the treatment of lung cancer. Curr Med Chem Anti-Canc Agents, 4:139–148.

    Article  PubMed  Google Scholar 

  88. Warburton, C., Dragowska, W.H., Gelmon, K., Chia, S., Yan, H., Masin, D., Denyssevych, T., Wallis, A.E., and Bally, M.B., 2004, Treatment of HER-2/neu Overexpressing Breast Cancer Xenograft Models with Trastuzumab (Herceptin) and Gefitinib (ZD1839): Drug Combination Effects on Tumor Growth, HER-2/neu and Epidermal Growth Factor Receptor Expression, and Viable Hypoxic Cell Fraction. Clin Cancer Res, 10:2512–2524.

    Article  PubMed  Google Scholar 

  89. Zhou, H., Kim, Y. S., Peletier, A., McCall, W., Earp, H. S., and Sartor, C. I., 2004, Effects of the EGFR/HER2 kinase inhibitor GW572016 on EGFR-and HER2-overexpressing breast cancer cell line proliferation, radiosensitization, and resistance. Int J Radiat Oncol Biol Phys, 58:344–352.

    Article  PubMed  Google Scholar 

  90. Herbst, R. S., 2003, Erlotinib (Tarceva): an update on the clinical trial program. Semin Oncol, 30:34–46.

    Article  Google Scholar 

  91. Christensen, J. G., Schreck, R. E., Chan, E., Wang, X., Yang, C., Liu, L., Cui, J., Sun, L., Wei, J., Cherrington, J. M., and Mendel, D. B., 2001, High levels of HER-2 expression alter the ability of epidermal growth factor receptor (EGFR) family tyrosine kinase inhibitors to inhibit EGFR phosphorylation in vivo. Clin Cancer Res, 7:4230–4238.

    PubMed  Google Scholar 

  92. Kim, S. J., Uehara, H., Karashima, T., Shepherd, D. L., Killion, J. J., and Fidler, I. J., 2003, Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice. Clin Cancer Res, 9:1200–1210.

    PubMed  Google Scholar 

  93. La Rosee, P., O'Dwyer, M. E., and Druker, B. J., 2002, Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic myelogenous leukemia: a translational perspective. Leukemia, 16:1213–1219.

    Article  PubMed  Google Scholar 

  94. DeMatteo, R. P., 2002, The GIST of targeted cancer therapy: a tumor (gastrointestinal stromal tumor), a mutated gene (c-kit), and a molecular inhibitor (STI571). Ann Surg Oncol, 9:831–839.

    PubMed  Google Scholar 

  95. Hwang, R. F., Yokoi, K., Bucana, C. D., Tsan, R., Killion, J. J., Evans, D. B., and Fidler, I. J., 2003, Inhibition of platelet-derived growth factor receptor phosphorylation by STI571 (Gleevec) reduces growth and metastasis of human pancreatic carcinoma in an orthotopic nude mouse model. Clin Cancer Res, 9:6534–6544.

    PubMed  Google Scholar 

  96. Folkman, J., 1995, Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med, 333:1757–1763.

    Article  Google Scholar 

  97. Liotta, L. A., Kleinerman, J., and Saidel, G. M., 1974, Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res, 34:997–1004.

    PubMed  Google Scholar 

  98. Folkman, J., 1971, Tumor angiogenesis: therapeutic implications. N Engl J Med, 285:1182–1186.

    PubMed  Google Scholar 

  99. Sivridis, E., Giatromanolaki, A., and Koukourakis, M. I., 2003, The vascular network of tumours—what is it not for? J Pathol, 201:173–180.

    Article  PubMed  Google Scholar 

  100. Sieczkiewicz, G. J., Hussain, M., and Kohn, E. C., 2002, Angiogenesis and metastasis. Cancer Treat Res, 107:353–381.

    PubMed  Google Scholar 

  101. Risau, W., 1997, Mechanisms of angiogenesis. Nature, 386:671–674.

    Article  PubMed  Google Scholar 

  102. Folkman, J., Merler, E., Abernathy, C., and Williams, G., 1971, Isolation of a tumor factor responsible or angiogenesis. J Exp Med, 133:275–288.

    Article  PubMed  Google Scholar 

  103. Goto, F., Goto, K., Weindel, K., and Folkman, J., 1993, Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Invest, 69:508–517.

    PubMed  Google Scholar 

  104. Carmeliet, P. and Jain, R. K., 2000, Angiogenesis in cancer and other diseases. Nature, 407:249–257.

    PubMed  Google Scholar 

  105. Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O'shea, K. S., Powell-Braxton, L., Hillan, K. J., and Moore, M. W., 1996, Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 380:439–442.

    Article  Google Scholar 

  106. Willett, C. G., Boucher, Y., di Tomaso, E., Duda, D. G., Munn, L. L., Tong, R. T., Chung, D. C., Sahani, D. V., Kalva, S. P., Kozin, S. V., Mino, M., Cohen, K. S., Scadden, D. T., Hartford, A. C., Fischman, A. J., Clark, J. W., Ryan, D. P., Zhu, A. X., Blaszkowsky, L. S., Chen, H. X., Shellito, P. C., Lauwers, G. Y., and Jain, R. K., 2004, Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med, 10:145–147.

    Article  PubMed  Google Scholar 

  107. Guidi, A. J., Abu-Jawdeh, G., Berse, B., Jackman, R. W., Tognazzi, K., Dvorak, H. F., and Brown, L. F., 1995, Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst, 87:1237–1245.

    PubMed  Google Scholar 

  108. Guidi, A. J., Abu-Jawdeh, G., Tognazzi, K., Dvorak, H. F., and Brown, L. F., 1996, Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in endometrial carcinoma. Cancer, 78: 454–460.

    Article  PubMed  Google Scholar 

  109. Hartenbach, E. M., Olson, T. A., Goswitz, J. J., Mohanraj, D., Twiggs, L. B., Carson, L. F., and Ramakrishnan, S., 1997, Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas. Cancer Lett, 121:169–175.

    Article  PubMed  Google Scholar 

  110. Price, J. T., Bonovich, M. T., and Kohn, E. C., 1997, The biochemistry of cancer dissemination. Crit Rev Biochem Mol Biol, 32:175–253.

    PubMed  Google Scholar 

  111. Kumar, R., Kuniyasu, H., Bucana, C. D., Wilson, M. R., and Fidler, I. J., 1998, Spatial and temporal expression of angiogenic molecules during tumor growth and progression. Oncol Res, 10:301–311.

    PubMed  Google Scholar 

  112. Ferrara, N., Gerber, H. P., and LeCouter, J., 2003, The biology of VEGF and its receptors. Nat Med, 9:669–676.

    Article  PubMed  Google Scholar 

  113. Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., and Dvorak, H. F., 1983, Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219:983–985.

    PubMed  Google Scholar 

  114. Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z., 1999, Vascular endothelial growth factor (VEGF) and its receptors. Faseb J, 13:9–22.

    PubMed  Google Scholar 

  115. de Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N., and Williams, L. T., 1992, The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science, 255:989–991.

    PubMed  Google Scholar 

  116. Terman, B. I., Dougher-Vermazen, M., Carrion, M. E., Dimitrov, D., Armellino, D. C., Gospodarowicz, D., and Bohlen, P., 1992, Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun, 187:1579–1586.

    Article  PubMed  Google Scholar 

  117. Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X. F., Breitman, M. L., and Schuh, A. C., 1995, Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 376:62–66.

    Article  PubMed  Google Scholar 

  118. Olson, T. A., Mohanraj, D., Carson, L. F., and Ramakrishnan, S., 1994, Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res, 54: 276–280.

    PubMed  Google Scholar 

  119. Paley, P. J., Staskus, K. A., Gebhard, K., Mohanraj, D., Twiggs, L. B., Carson, L. F., and Ramakrishnan, S., 1997, Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer, 80:98–106.

    Article  PubMed  Google Scholar 

  120. Paley, P. J., Goff, B. A., Gown, A. M., Greer, B. E., and Sage, E. H., 2000, Alterations in SPARC and VEGF immunoreactivity in epithelial ovarian cancer. Gynecol Oncol, 78:336–341.

    Article  PubMed  Google Scholar 

  121. Eppenberger, U., Kueng, W., Schlaeppi, J. M., Roesel, J. L., Benz, C., Mueller, H., Matter, A., Zuber, M., Luescher, K., Litschgi, M., Schmitt, M., Foekens, J. A., and Eppenberger-Castori, S., 1998, Markers of tumor angiogenesis and proteolysis independently define high-and low-risk subsets of node-negative breast cancer patients. J Clin Oncol, 16:3129–3136.

    PubMed  Google Scholar 

  122. Linderholm, B., Tavelin, B., Grankvist, K., and Henriksson, R., 1998, Vascular endothelial growth factor is of high prognostic value in node-negative breast carcinoma. J Clin Oncol, 16:3121–3128.

    PubMed  Google Scholar 

  123. George, D. J., and Kaelin, W. G., Jr., 2003, The von Hippel-Lindau protein, vascular endothelial growth factor, and kidney cancer. N Engl J Med, 349:419–421.

    Article  PubMed  Google Scholar 

  124. Igarashi, H., Esumi, M., Ishida, H., and Okada, K., 2002, Vascular endothelial growth factor overexpression is correlated with von Hippel-Lindau tumor suppressor gene inactivation in patients with sporadic renal cell carcinoma. Cancer, 95:47–53.

    Article  PubMed  Google Scholar 

  125. Rosen, L. S., 2002, Inhibitors of the vascular endothelial growth factor receptor. Hematol Oncol Clin North Am, 16:1173–1187.

    Article  PubMed  Google Scholar 

  126. Patel, N., Sun, L., Moshinsky, D., Chen, H., Leahy, K. M., Le, P., Moss, K. G., Wang, X., Rice, A., Tam, D., Laird, A. D., Yu, X., Zhang, Q., Tang, C., McMahon, G., and Howlett, A., 2003, A selective and oral small molecule inhibitor of vascular epithelial growth factor receptor (VEGFR)-2 and VEGFR-1 inhibits neovascularization and vascular permeability. J Pharmacol Exp Ther, 306 838–845.

    Article  PubMed  Google Scholar 

  127. Hotte, S. J., and Hirte, H. W., 2002, BAY 43-9006: early clinical data in patients with advanced solid malignancies. Curr Pharm Des, 8:2249–2253.

    Article  PubMed  Google Scholar 

  128. Giantonio, B. J., Levy, D., O'Dwyer, N. J., Catalano, P. J., and Benson, A. B., 2003, Bevacizumab (anti-VEGF) plus IFL (irinotecan, fluorouracil, leucovorin) as front-line therapy for advanced colorectal cancer (advCRC): Results from the Eastern Cooperative Oncology Group (ECOG) Study E2200. In: Proc Am Soc Clin Oncol, No. 1024, Chicago, IL.

    Google Scholar 

  129. Yang, J. C., Haworth, L., Sherry, R. M., Hwu, P., Schwartzentruber, D. J., Topalian, S. L., Steinberg, S. M., Chen, H. X., and Rosenberg, S. A., 2003, A randomized trail of Bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med, 349:427–434.

    Article  Google Scholar 

  130. Asano, M., Yukita, A., and Suzuki, H., 1999, Wide spectrum of antitumor activity of a neutralizing monoclonal antibody to human vascular endothelial growth factor. Jpn J Cancer Res, 90:93–100.

    PubMed  Google Scholar 

  131. Jayson, G., Mulater, C., Ranson, M., Zweit, J., Hasting, D., Julyan, P., Lawrance, J., McGown, A., Jackson, A., Haroon, H., Hakannson, L., Wagstaff, J., Groenewegen, G., Lehmann, F., Levitt, D., Tang, T., and Zweirzina, H., 2001, Anti-VEGF Antibody HuMV833: an EORTC Biological Treatment Development Group Phase I toxicity, pharmacokinetic, and pharmacodynamic study. In: Proc Am Soc Clin Oncol, No. 14, San Francisco, CA.

    Google Scholar 

  132. Heldin, C. H., and Westermark, B., 1999, Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev, 79:1283–1316.

    PubMed  Google Scholar 

  133. Henriksen, R., Funa, K., Wilander, E., Backstrom, T., Ridderheim, M., and Oberg, K., 1993, Expression and prognostic significance of platelet-derived growth factor and its receptors in epithelial ovarian neoplasms. Cancer Res, 53:4550–4554.

    PubMed  Google Scholar 

  134. Thommen, R., Humar, R., Misevic, G., Pepper, M. S., Hahn, A. W., John, M., and Battegay, E. J., 1997, PDGF-BB increases endothelial migration on cord movements during angiogenesis in vitro. J Cell Biochem, 64:403–413.

    Article  PubMed  Google Scholar 

  135. Sundberg, C., Ljungstrom, M., Lindmark, G., Gerdin, B., and Rubin, K., 1993, Microvascular pericytes express platelet-derived growth factor-beta receptors in human healing wounds and colorectal adenocarcinoma. Am J Pathol, 143:1377–1388.

    PubMed  Google Scholar 

  136. Wang, D., Huang, H. J., Kazlauskas, A., and Cavenee, W. K., 1999, Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res, 59:1464–1472.

    PubMed  Google Scholar 

  137. Reinmuth, N., Liu, W., Jung, Y. D., Ahmad, S. A., Shaheen, R. M., Fan, F., Bucana, C. D., McMahon, G., Gallick, G. E., and Ellis, L. M., 2001, Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. Faseb J, 15:1239–1241.

    PubMed  Google Scholar 

  138. Lindahl, P., Johansson, B. R., Leveen, P., and Betsholtz, C., 1997, Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science, 277:242–245.

    Article  PubMed  Google Scholar 

  139. Demetri, G. D., 2001, Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin Oncol, 28:19–26.

    Article  Google Scholar 

  140. Greco, A., Roccato, E., Miranda, C., Cleris, L., Formelli, F., and Pierotti, M. A., 2001, Growthinhibitory effect of STI571 on cells transformed by the COL1A1/PDGFB rearrangement. Int J Cancer, 92:354–360.

    Article  Google Scholar 

  141. Myllarniemi, M., Calderon, L., Lemstrom, K., Buchdunger, E., and Hayry, P., 1997, Inhibition of platelet-derived growth factor receptor tyrosine kinase inhibits vascular smooth muscle cell migration and proliferation. Faseb J, 11:1119–1126.

    PubMed  Google Scholar 

  142. Schmandt, R. E., Broaddus, R., Lu, K. H., Shvartsman, H., Thornton, A., Malpica, A., Sun, C., Bodurka, D. C., and Gershenson, D. M., 2003, Expression of c-ABL, c-KIT, and platelet-derived growth factor receptor-beta in ovarian serous carcinoma and normal ovarian surface epithelium. Cancer, 98:758–764.

    Article  PubMed  Google Scholar 

  143. Link, C.J., Jr., Kohn, E., and Reed, E., 1996, The relationship between borderline ovarian tumors and epithelial ovarian carcinoma: epidemiologic, pathologic, and molecular aspects. Gynecol Oncol, 60:347–354.

    Article  PubMed  Google Scholar 

  144. Capdeville, R., Buchdunger, E., Zimmermann, J., and Matter, A., 2002, Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov, 1:493–502.

    Article  PubMed  Google Scholar 

  145. Dudley, A., Gilbert, R. E., Thomas, D., Cox, A., Price, J. T., Best, J., and Jenkins, A., 2003, STI-571 inhibits in vitro angiogenesis. Biochem Biophys Res Commun, 310:135–142.

    Article  PubMed  Google Scholar 

  146. Atallah, E., Talpaz, M., O'Brien, S., Rios, M. B., Guo, J. Q., Arlinghaus, R., Fernandes-Reese, S., and Kantarjian, H., 2002, Chronic myelogenous leukemia in T cell lymphoid blastic phase achieving durable complete cytogenetic and molecular remission with imatinib mesylate (STI571; Gleevec) therapy. Cancer, 94:2996–2999.

    Article  Google Scholar 

  147. Barbany, G., Hoglund, M., and Simonsson, B., 2002, Complete molecular remission in chronic myelogenous leukemia after imatinib therapy. N Engl J Med, 347:539–540.

    Article  PubMed  Google Scholar 

  148. Demetri, G. D., von Mehren, M., Blanke, C. D., Van den Abbeele, A. D., Eisenberg, B., Roberts, P. J., Heinrich, M. C., Tuveson, D. A., Singer, S., Janicek, M., Fletcher, J. A., Silverman, S. G., Silberman, S. L., Capdeville, R., Kiese, B., Peng, B., Dimitrijevic, S., Druker, B. J., Corless, C., Fletcher, C. D., and Joensuu, H., 2002, Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med, 347:472–480.

    Article  PubMed  Google Scholar 

  149. Demetri, G. D., George, S., Heinrich, M. C., Fletcher, J. A., Fletcher, C. D. M., Desai, J., Cohen, D. P., Scigalla, P., Cherrington, J., and Van Den Abbeele, A. D., 2003, Clinical activity and tolerability of the multi-targeted tyrosine kinase inhibitor SU11248 in patients (pts) with metastatic gastrointestinal stromal tumor (GIST) refractory to imatinib mesylate. In: Proc Am Soc Clin Oncol No. 3273, Chicago, IL.

    Google Scholar 

  150. Raymond, E., Faivre, S., Vera, K., Delbaldo, C., Robert, C., Spatz, A., Bello, C., Brega, N., Scigalla, P., and Armand, J. P., 2003, Final results of a phase I and pharmacokinetic study of SU11248, a novel multi-target tyrosine kinase inhibitor, in patients with advanced cancers. In: Proc Am Soc Clin Oncol, No. 769, Chicago, IL.

    Google Scholar 

  151. Mall, J. W., Myers, J. A., Xu, X., Saclarides, T. J., Philipp, A. W., and Pollmann, C., 2002, [Leflunomide reduces the angiogenesis score and tumor growth of subcutaneously implanted colon carcinoma cells in the mouse model]. Chirurg, 73:716–720.

    Article  PubMed  Google Scholar 

  152. Shawver, L. K., Schwartz, D. P., Mann, E., Chen, H., Tsai, J., Chu, L., Taylorson, L., Longhi, M., Meredith, S., Germain, L., Jacobs, J. S., Tang, C., Ullrich, A., Berens, M. E., Hersh, E., McMahon, G., Hirth, K. P., and Powell, T. J., 1997, Inhibition of platelet-derived growth factor-mediated signal transduction and tumor growth by N-[4-(trifluoromethyl)-phenyl]5-methylisoxazole-4-carboxamide. Clin Cancer Res, 3:1167–1177.

    PubMed  Google Scholar 

  153. Ko, Y. J., Chachou, A., Small, E., Reese, D., Kabbinavar, F., Taneja, S., DePaoli, A., Hannah, A., Balk, S., and Bubley, G., 1999, Phase II study of SU101 in patients with PSA-positive prostate cancer. In: Proc Am Soc Clin Oncol, No. 1220, Atlanta, GA.

    Google Scholar 

  154. Folkman, J., Klagsbrun, M., Sasse, J., Wadzinski, M., Ingber, D., and Vlodavsky, I., 1988, A heparinbinding angiogenic protein—basic fibroblast growth factor—is stored within basement membrane. Am J Pathol, 130:393–400.

    PubMed  Google Scholar 

  155. Wiesmann, C., Muller, Y. A., and de Vos, A. M., 2000, Ligand-binding sites in Ig-like domains of receptor tyrosine kinases. J Mol Med, 78:247–260.

    Article  PubMed  Google Scholar 

  156. Dono, R., Texido, G., Dussel, R., Ehmke, H., and Zeller, R., 1998, Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. Embo J, 17:4213–4225.

    Article  Google Scholar 

  157. Seghezzi, G., Patel, S., Ren, C. J., Gualandris, A., Pintucci, G., Robbins, E. S., Shapiro, R. L., Galloway, A. C., Rifkin, D. B., and Mignatti, P., 1998, Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol, 141:1659–1673.

    Article  PubMed  Google Scholar 

  158. Brooks, P. C., Clark, R. A., and Cheresh, D. A., 1994, Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 264:569–571.

    PubMed  Google Scholar 

  159. Klagsbrun, M., and Baird, A., 1991, A dual receptor system is required for basic fibroblast growth factor activity. Cell, 67:229–231.

    Article  PubMed  Google Scholar 

  160. Netzer, P., Domek, M., Pai, R., Halter, F., and Tarnawski, A., 2001, Inhibition of human colon cancer cell growth by antisense oligodeoxynucleotides targeted at basic fibroblast growth factor. Aliment Pharmacol Ther, 15:1673–1679.

    Article  PubMed  Google Scholar 

  161. Crickard, K., Gross, J. L., Crickard, U., Yoonessi, M., Lele, S., Herblin, W. F., and Eidsvoog, K., 1994, Basic fibroblast growth factor and receptor expression in human ovarian cancer. Gynecol Oncol, 55:277–284.

    Article  PubMed  Google Scholar 

  162. Miyake, H., Hara, I., Yoshimura, K., Eto, H., Arakawa, S., Wada, S., Chihara, K., and Kamidono, S., 1996, Introduction of basic fibroblast growth factor gene into mouse renal cell carcinoma cell line enhances its metastatic potential. Cancer Res, 56:2440–2445.

    PubMed  Google Scholar 

  163. Tsuboi, R., Sato, Y., and Rifkin, D. B., 1990, Correlation of cell migration, cell invasion, receptor number, proteinase production, and basic fibroblast growth factor levels in endothelial cells. J Cell Biol, 110:511–517.

    Article  PubMed  Google Scholar 

  164. Miyake, H., Yoshimura, K., Hara, I., Eto, H., Arakawa, S., and Kamidono, S., 1997, Basic fibroblast growth factor regulates matrix metalloproteinases production and in vitro invasiveness in human bladder cancer cell lines. J Urol, 157:2351–2355.

    Article  PubMed  Google Scholar 

  165. Sliutz, G., Tempfer, C., Obermair, A., Dadak, C., and Kainz, C., 1995, Serum evaluation of basic FGF in breast cancer patients. Anticancer Res, 15:2675–2677.

    PubMed  Google Scholar 

  166. Dosquet, C., Coudert, M. C., Lepage, E., Cabane, J., and Richard, F., 1997, Are angiogenic factors, cytokines, and soluble adhesion molecules prognostic factors in patients with renal cell carcinoma? Clin Cancer Res, 3:2451–2458.

    PubMed  Google Scholar 

  167. Davidson, B., Goldberg, I., Kopolovic, J., Gotlieb, W. H., Givant-Horwitz, V., Nesland, J. M., Berner, A., Ben-Baruch, G., Bryne, M., and Reich, R., 2000, Expression of angiogenesis-related genes in ovarian carcinoma—a clinicopathologic study. Clin Exp Metastasis, 18:501–507.

    Article  Google Scholar 

  168. Prindull, G., and Zipori, D., 2004, Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood, 103:2892–2899.

    Article  PubMed  Google Scholar 

  169. Bush, K. T., Sakurai, H., Steer, D. L., Leonard, M. O., Sampogna, R. V., Meyer, T. N., Schwesinger, C., Qiao, J., and Nigam, S. K., 2004, TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol, 266:285–298.

    Article  PubMed  Google Scholar 

  170. Klein, C. A., Blankenstein, T. J., Schmidt-Kittler, O., Petronio, M., Polzer, B., Stoecklein, N. H., and Riethmuller, G., 2002, Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet, 360:683–689.

    Article  PubMed  Google Scholar 

  171. Zoltan-Jones, A., Huang, L., Ghatak, S., and Toole, B. P., 2003, Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J Biol Chem, 278:45801–45810.

    Article  PubMed  Google Scholar 

  172. Tanaka, K., Hiraiwa, N., Hashimoto, H., Yamazaki, Y., and Kusakabe, M., 2004, Tenascin-C regulates angiogenesis in tumor through the regulation of vascular endothelial growth factor expression. Int J Cancer, 108:31–40.

    Article  PubMed  Google Scholar 

  173. Tlsty, T. D., and Hein, P. W., 2001, Know thy neighbor: stromal cells can contribute oncogenic signals. Curr Opin Genet Dev, 11:54–59.

    Article  Google Scholar 

  174. Piek, E., Moustakas, A., Kurisaki, A., Heldin, C. H., and ten Dijke, P., 1999, TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci, 112 (Pt 24):4557–4568.

    PubMed  Google Scholar 

  175. Jechlinger, M., Grunert, S., Tamir, I. H., Janda, E., Ludemann, S., Waerner, T., Seither, P., Weith, A., Beug, H., and Kraut, N., 2003, Expression profiling of epithelial plasticity in tumor progression. Oncogene, 22:7155–7169.

    Article  PubMed  Google Scholar 

  176. Jiang, Y., Henderson, D., Blackstad, M., Chen, A., Miller, R. F., and Verfaillie, C. M., 2003, Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA, 100Suppl 1:11854–11860.

    Article  PubMed  Google Scholar 

  177. Wagers, A. J., Sherwood, R. I., Christensen, J. L., and Weissman, I. L., 2002, Little evidence for developmental plasticity of adult hematopoietic stem cells. Science, 297:2256–2259.

    Article  PubMed  Google Scholar 

  178. Toma, J. G., Akhavan, M., Fernandes, K. J., Barnabe-Heider, F., Sadikot, A., Kaplan, D. R., and Miller, F. D., 2001, Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol, 3:778–784.

    Article  PubMed  Google Scholar 

  179. Krause, D. S., Theise, N. D., Collector, M. I., Henegariu, O., Hwang, S., Gardner, R., Neutzel, S., and Sharkis, S. J., 2001, Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105:369–377.

    Article  PubMed  Google Scholar 

  180. Liang, L., and Bickenbach, J. R., 2002, Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells, 20:21–31.

    Article  PubMed  Google Scholar 

  181. Cao, B., Zheng, B., Jankowski, R. J., Kimura, S., Ikezawa, M., Deasy, B., Cummins, J., Epperly, M., Qu-Petersen, Z., and Huard, J., 2003, Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol, 5:640–646.

    Article  PubMed  Google Scholar 

  182. Vassilopoulos, G., Wang, P. R., and Russell, D. W., 2003, Transplanted bone marrow regenerates liver by cell fusion. Nature, 422:901–904.

    Article  PubMed  Google Scholar 

  183. McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., Ferrari, G., Mavilio, F., and Goodell, M. A., 2002, Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci U S A, 99:1341–1346.

    Article  PubMed  Google Scholar 

  184. Gilchrist, A. J., Meuser, R., Turchinsky, J., Shaw, A. R., Pasdar, M., and Dixon, W. T., 2002, Cell adhesion-mediated transformation of a human SCLC cell line is associated with the development of a normal phenotype. Exp Cell Res, 276:63–78.

    Article  PubMed  Google Scholar 

  185. Liotta, L. A., Kohn, E. C., and Petricoin, E. F., 2001, Clinical proteomics: personalized molecular medicine. Jama, 286:2211–2214.

    Article  PubMed  Google Scholar 

  186. Nishizuka, S., Chen, S. T., Gwadry, F. G., Alexander, J., Major, S. M., Scherf, U., Reinhold, W. C., Waltham, M., Charboneau, L., Young, L., Bussey, K. J., Kim, S., Lababidi, S., Lee, J. K., Pittaluga, S., Scudiero, D. A., Sausville, E. A., Munson, P. J., Petricoin, E. F., 3rd, Liotta, L. A., Hewitt, S. M., Raffeld, M., and Weinstein, J. N., 2003, Diagnostic markers that distinguish colon and ovarian adenocarcinomas: identification by genomic, proteomic, and tissue array profiling. Cancer Res, 63:5243–5250.

    PubMed  Google Scholar 

  187. Jones, M. B., Krutzsch, H., Shu, H., Zhao, Y., Liotta, L. A., Kohn, E. C., and Petricoin, E. F., 3rd, 2002, Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics, 2:76–84.

    Article  PubMed  Google Scholar 

  188. Stevens, E. V., Liotta, L. A., and Kohn, E. C., 2003, Proteomic analysis for early detection of ovarian cancer: a realistic approach? Int J Gynecol Cancer, 13Suppl 2:133–139.

    Article  Google Scholar 

  189. Mehta, A., Lowenthal, M., Johann, D., Rajapakse, V., Fusaro, V., Hoatson, S., Asmussen, H., Roberts, J., Butler, C., Pappas, R., Ross, S., Fishman, D., Petricoin III, E., and Liotta, L. A., 2004, Carrier albumin's binders in serum (CABs): Detecting ovarian cancer. In: American Association of Cancer Research, No. 4774, Orlando, FL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Kassis, J., Alejandro, E., Virador, V., Kohn, E.C. (2005). Current and Future Therapeutic Targets of the Tumour-Host Microenvironment. In: Meadows, G.G. (eds) Integration/Interaction of Oncologic Growth. Cancer Growth and Progression, vol 15. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3414-8_20

Download citation

Publish with us

Policies and ethics