Skip to main content

Translesion Synthesis And Errorprone Polymerases

  • Chapter
Genome Instability in Cancer Development

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 570))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arlett, C.F., S.A. Harcourt, and B.C. Broughton. 1975. The influence of caffeine on cell survival in excision-proficient and excision-deficient xeroderma pigmentosum and normal human cell strains following ultraviolet light irradiation. Mutation Res. 33:341–346.

    CAS  PubMed  Google Scholar 

  • Bailly, V., S. Lauder, S. Prakash, and L. Prakash. 1997. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J Biol Chem. 272:23360–23365.

    CAS  PubMed  Google Scholar 

  • Becherel, O.J., and R.P. Fuchs. 2001. Mechanism of DNA polymerase II-mediated frameshift mutagenesis. Proc Natl Acad Sci U S A. 98:8566–71.

    Article  CAS  PubMed  Google Scholar 

  • Becherel, O.J., R.P.P. Fuchs, and J. Wagner. 2002. Pivotal role of the beta-clamp in translesion DNA synthesis and mutagenesis in E. coli cells. DNA Repair. 1:703–708.

    Article  CAS  PubMed  Google Scholar 

  • Bravo, R., and H. Macdonald-Bravo. 1987. Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J Cell Biol. 105:1549–1554.

    Article  CAS  PubMed  Google Scholar 

  • Bruck, I., and M. O’Donnell. 2001. The ring-type polymerase sliding clamp family. Genome Biol. 2: reviews3001.1–3001.3.

    Google Scholar 

  • Bunting, K.A., S.M. Roe, and L.H. Pearl. 2003. Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp. EMBO J. 22:5883–92.

    Article  CAS  PubMed  Google Scholar 

  • Covo, S., L. Blanco, and Z. Livneh. 2004. Lesion bypass by human DNA polymerase mu reveals a template-dependent, sequence-independent nucleotidyl transferase activity. J Biol Chem. 279:859–65.

    CAS  PubMed  Google Scholar 

  • Diaz, M., N.B. Watson, G. Turkington, L.K. Verkoczy, N.R. Klinman, and W.G. McGregor. 2003. Decreased frequency and highly aberrant spectrum of ultraviolet-induced mutations in the hprt gene of mouse fibroblasts expressing antisense RNA to DNA polymerase zeta. Mol Cancer Res. 1:836–47.

    CAS  PubMed  Google Scholar 

  • Fernandez de Henestrosa, A.R., T. Ogi, S. Aoyagi, D. Chafin, J.J. Hayes, H. Ohmori, and R.R. Woodgate. 2000. Identification of additional genes belonging to the LexA-regulon in Escherichia coli. Molecular Microbiology. 35:1560–1572.

    Google Scholar 

  • Friedberg, E.C., R. Wagner, and M. Radman. 2002. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science. 296:1627–1630.

    Article  CAS  PubMed  Google Scholar 

  • Friedberg, E.C., G.C. Walker, and W. Siede. 1995. DNA Repair and Mutagenesis. ASM Press, Washington, USA.

    Google Scholar 

  • Fujii, S. and Fuchs, R.P. 2004. Defining the position of the switches between replicative and bypass DNA polymerases. EMBO J. 23:4342–4352.

    Article  CAS  PubMed  Google Scholar 

  • Game, J.C. 2000. The Saccharomyces repair genes at the end of the century. Mutat Res. 451:277–93.

    CAS  PubMed  Google Scholar 

  • Gerlach, V.L., L. Aravind, G. Gotway, R.A. Schultz, E.V. Koonin, and E.C. Friedberg. 1999. Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proc Natl Acad Sci U S A. 96:11922–11927.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, P.E.M., W.G. McGregor, V.M. Maher, P. Nisson, and C.W. Lawrence. 1998. A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ. Proc Natl AcadSci., USA. 95:6876–6880..

    Article  CAS  Google Scholar 

  • Goodman, M.F. 2002. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev BioChem. 71:17–50.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, M.F., and B. Tippin. 2000. Sloppier copier DNA polymerases involved in genome repair. Curr Opin Genet Dev. 10:162–168.

    Article  CAS  PubMed  Google Scholar 

  • Guo, C., P.L. Fischhaber, M.J. Luk-Paszyc, Y. Masuda, J. Zhou, K. Kamiya, C. Kisker, and E.C. Friedberg. 2003. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J. 22:6621–30.

    Article  CAS  PubMed  Google Scholar 

  • Guo, D., X. Wu, D.K. Rajpal, J.S. Taylor, and Z. Wang. 2001. Translesion synthesis by yeast DNA polymerase zeta from templates containing lesions of ultraviolet radiation and acetylaminofluorene. Nucleic Acids Res. 29:2875–2883.

    Article  CAS  PubMed  Google Scholar 

  • Haracska, L., R.E. Johnson, I. Unk, B. Phillips, J. Hurwitz, L. Prakash, and S. Prakash. 2001a. Physical and Functional Interactions of Human DNA Polymerase η with PCNA. Mol Cell Biol. 21:7199–7206.

    Article  CAS  PubMed  Google Scholar 

  • Haracska, L., R.E. Johnson, I. Unk, B.B. Phillips, J. Hurwitz, L. Prakash, and S. Prakash. 2001b. Targeting of human DNA polymerase ι to the replication machinery via interaction with PCNA. Proc Natl Acad Sci U S A. 98:14256–14261.

    Article  CAS  PubMed  Google Scholar 

  • Haracska, L., I. Unk, R.E. Johnson, B.B. Phillips, J. Hurwitz, L. Prakash, and S. Prakash. 2002. Stimulation of DNA synthesis activity of human DNA polymerase κ by PCNA. Mol Cell Biol. 22:784–791.

    Article  CAS  PubMed  Google Scholar 

  • Havener, J.M., S.A. McElhinny, E. Bassett, M. Gauger, D.A. Ramsden, and S.G. Chaney. 2003. Translesion synthesis past platinum DNA adducts by human DNA polymerase μ. Biochemistry. 42:1777–88.

    Article  CAS  PubMed  Google Scholar 

  • Hoege, C., B. Pfander, G.-L. Moldovan, G. Pyrolowakis, and S. Jentsch. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 419:135–141.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, R.M., and C.M. Pickart. 1999. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell. 96:645–653.

    Article  CAS  PubMed  Google Scholar 

  • Jentsch, S., J.P. McGrath, and A. Varshavsky. 1987. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature. 329:131–134.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, E.S., and A.A. Gupta. 2001. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell. 106:735–744.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, R.E., C.M. Kondratick, S. Prakash, and L. Prakash. 1999a. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science. 285:263–265.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, R.E., S. Prakash, and L. Prakash. 1999b. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Polη. Science. 283:1001–1004.

    CAS  PubMed  Google Scholar 

  • Johnson, R.E., M.T. Washington, L. Haracska, S. Prakash, and L. Prakash. 2000. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature. 406:1015–1019.

    CAS  PubMed  Google Scholar 

  • Kai, M., and T. Wang. 2003. Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev. 17:64–76.

    Article  CAS  PubMed  Google Scholar 

  • Kannouche, P., B.C. Broughton, M. Volker, F. Hanaoka, L.H.F. Mullenders, and A.R. Lehmann. 2001. Domain structure, localization and function of DNA polymerase η, defective in xeroderma pigmentosum variant cells. Genes Dev. 15:158–172.

    Article  CAS  PubMed  Google Scholar 

  • Kannouche, P., A.R. Fernandez de Henestrosa, B. Coull, A.E. Vidal, C. Gray, D. Zicha, R. Woodgate, and A.R. Lehmann. 2003. Localization of DNA polymerases η and ι to the replication machinery is tightly co-ordinated in human cells. EMBO J. 22:1223–1233.

    Article  CAS  PubMed  Google Scholar 

  • Kannouche, P.L., and A.R. Lehmann. 2004. Ubiquitination of PCNA and the Polymerase Switch in Human Cells. Cell Cycle. 3: 1011–1013.

    CAS  PubMed  Google Scholar 

  • Kannouche, P.L., J. Wing, and A.R. Lehmann. 2004. Interaction of Human DNA Polymerase η with Monoubiquitinated PCNA; A Possible Mechanism for the Polymerase Switch in Response to DNA Damage. Mol Cell. 14:491–500.

    Article  CAS  PubMed  Google Scholar 

  • Kraemer, K.H., M.M. Lee, and J. Scotto. 1987. Xeroderma Pigmentosum. Cutaneous, ocular and neurologic abnormalities in 830 published cases. Arch Dermatol. 123:241–250.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, A.R. 2002. Replication of damaged DNA in mammalian cells: new solutions to an old problem. Mutat Res. 509:23–34.

    CAS  PubMed  Google Scholar 

  • Lehmann, A.R., S. Kirk-Bell, C.F. Arlett, M.C. Paterson, P.H.M. Lohman, E.A. de Weerd-Kastelein, and D. Bootsma. 1975. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc Natl Acad Sci, USA. 72:219–223.

    CAS  PubMed  Google Scholar 

  • Lemontt, J.F. 1971. Mutants of yeast defective in mutation induced by ultraviolet light. Adv. Genet. 68:21–33.

    Google Scholar 

  • Lenne-Samuel, N., J. Wagner, H. Etienne, and R.P. Fuchs. 2002. The processivity factor beta controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo. Embo Rep. 3:45–9.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., C.J. Woo, M.D. Iglesias-Ussel, D. Ronai, and M.D. Scharff. 2004. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 18:1–11.

    PubMed  Google Scholar 

  • Li, Z., H. Zhang, T.P. McManus, J.J. McCormick, C.W. Lawrence, and V.M. Maher. 2002. hREV3 is essential for error-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts. Mutat Res. 510:71–80.

    CAS  PubMed  Google Scholar 

  • Lin, W., H. Xin, Y. Zhang, X. Wu, F. Yuan, and Z. Wang. 1999. The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res. 27:4468–4475.

    CAS  PubMed  Google Scholar 

  • Ling, H., F. Boudsocq, B.S. Plosky, R. Woodgate, and W. Yang. 2003. Replication of a cis-syn thymine dimer at atomic resolution. Nature. 424:1083–7.

    Article  CAS  PubMed  Google Scholar 

  • Ling, H., F. Boudsocq, R. Woodgate, and W. Yang. 2001. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell. 107:91–102.

    Article  CAS  PubMed  Google Scholar 

  • Lopez de Saro, F., R.E. Georgescu, F. Leu, and M. O’Donnell. 2004. Protein trafficking on sliding clamps. Philos Trans R Soc Lond B Biol Sci. 359:25–30.

    Google Scholar 

  • Lopez de Saro, F.J., R.E. Georgescu, M.F. Goodman, and M. O’Donnell. 2003. Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair. EMBO J. 22:6408–18.

    Google Scholar 

  • Maher, V.M., L.M. Ouellette, R.D. Curren, and J.J. McCormick. 1976. Frequency of ultraviolet light-induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells. Nature. 261:593–595.

    Article  CAS  PubMed  Google Scholar 

  • Masutani, C., M. Araki, A. Yamada, R. Kusumoto, T. Nogimori, T. Maekawa, S. Iwai, and F. Hanaoka. 1999a. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J. 18:3491–3501.

    Article  CAS  PubMed  Google Scholar 

  • Masutani, C., R. Kusumoto, S. Iwai, and F. Hanaoka. 2000. Accurate translesion synthesis by human DNA polymerase η. EMBO J. 19:3100–3109.

    Article  CAS  PubMed  Google Scholar 

  • Masutani, C., R. Kusumoto, A. Yamada, N. Dohmae, M. Yokoi, M. Yuasa, M. Araki, S. Iwai, K. Takio, and F. Hanaoka. 1999b. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature. 399:700–4.

    CAS  PubMed  Google Scholar 

  • McCulloch, S.D., R.J. Kokoska, C. Masutani, S. Iwai, F. Hanaoka, and T.A. Kunkel. 2004. Preferential cis-syn thymine dimer bypass by DNA polymerase η occurs with biased fidelity. Nature. 428:97–100.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, J.P., E.G. Frank, B.S. Plosky, I.B. Rogozin, C. Masutani, F. Hanaoka, R. Woodgate, and P.J. Gearhart. 2003. 129-derived strains of mice are deficient in DNA polymerase ι and have normal immunoglobulin hypermutation. J Exp Med. 198:635–43.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, J.P., A.S. Levine, and R. Woodgate. 1997. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics. 147:1557–1568.

    CAS  PubMed  Google Scholar 

  • McDonald, J.P., V. Rapic-Otrin, J.A. Epstein, B.C. Broughton, X. Wang, A.R. Lehmann, D.J. Wolgemuth, and R. Woodgate. 1999. Novel human and mouse homologs of Saccharomyces cerevisiae DNA polymerase η. Genomics. 60:20–30.

    Article  CAS  PubMed  Google Scholar 

  • Nair, D.T., R.E. Johnson, S. Prakash, L. Prakash, and A.K. Aggarwal. 2004. Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing. Nature. 430:377–80.

    Article  CAS  PubMed  Google Scholar 

  • Naktinis, V., J. Turner, and M. O’Donnell. 1996. A molecular switch in a replication machine defined by an internal competition for protein rings. Cell. 84:137–45.

    Article  CAS  PubMed  Google Scholar 

  • Napolitano, R., R. Janel-Bintz, J. Wagner, and R.P. Fuchs. 2000. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J. 19:6259–65.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, J.R., P.E. Gibbs, A.M. Nowicka, D.C. Hinkle, and C.W. Lawrence. 2000. Evidence for a second function for Saccharomyces cerevisiae Rev1p. Mol MicroBiol. 37:549–554.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, J.R., C.W. Lawrence, and D.C. Hinkle. 1996a. Deoxycytidyl transferase activity of yeast REV1 protein. Nature. 382:729–31.

    CAS  PubMed  Google Scholar 

  • Nelson, J.R., C.W. Lawrence, and D.C. Hinkle. 1996b. Thymine-thymine dimer bypass by yeast DNA polymerase ζ. Science. 272:1646–1649.

    CAS  PubMed  Google Scholar 

  • Ogi, T., T. Kato, and H. Ohmori. 1999. Mutation enhancement by DINB1, a mammalian homologue of the Escherichia coli mutagenesis protein dinB. Genes Cells. 4:607–618.

    Article  CAS  PubMed  Google Scholar 

  • Ogi, T., J. Mimura, M. Hikida, H. Fujimoto, Y. Fujii-Kuriyama, and H. Ohmori. 2001. Expression of human and mouse genes encoding polκ: testis-specific developmental regulation and AhR-dependent inducible transcription. Genes Cells. 6:943–953.

    Article  CAS  PubMed  Google Scholar 

  • Ogi, T., Y. Shinkai, K. Tanaka, and H. Ohmori. 2002. Pol κ protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc Natl Acad Sci U S A. 99:15548–15553.

    Article  CAS  PubMed  Google Scholar 

  • Ogi, T., P. Kannouche, and A. R. Lehmann. 2005. Localization of human DNA polymerase κ (polκ), a Y-family DNA polymerase: relationship to PCNA foci. J Cell Sci.118:129–136.

    Google Scholar 

  • Ohashi, E., Y. Murakumo, N. Kanjo, J. Akagi, C. Masutani, F. Hanaoka, and H. Ohmori. 2004. Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells. 9:523–31.

    Article  CAS  PubMed  Google Scholar 

  • Ohmori, H., E.C. Friedberg, R.P.P. Fuchs, M.F. Goodman, F. Hanaoka, D. Hinkle, T.A. Kunkel, C.W. Lawrence, Z. Livneh, T. Nohmi, L. Prakash, S. Prakash, T. Todo, G.C. Walker, Z. Wang, and R. Woodgate. 2001. The Y-family of DNA polymerases. Molecular Cell. 8:7–8.

    Article  CAS  PubMed  Google Scholar 

  • O-Wang, J., Kawamura, K., Tada, Y., Ohmori, H., Kimura, H., Sakiyama, S., and Tagawa, M. 2001. DNA polymerase kappa, implicated in spontaneous and DNA damage-induced mutagenesis, is overexpressed in lung cancer. Cancer Res 61:5366–5369.

    CAS  PubMed  Google Scholar 

  • Pages, V., and R.P. Fuchs. 2002. How DNA lesions are turned into mutations within cells? Oncogene. 21:8957–8966.

    CAS  PubMed  Google Scholar 

  • Peat, T.S., E.G. Frank, J.P. McDonald, A.S. Levine, R. Woodgate, and W.A. Hendrickson. 1996. Structure of the UmuD’ protein and its regulation in response to DNA damage. Nature. 380:727–30.

    Article  CAS  PubMed  Google Scholar 

  • Prakash, S., and L. Prakash. 2002. Translesion DNA synthesis in eukaryotes: a one-or two-polymerase affair. Genes Dev. 16:1872–1883.

    Article  CAS  PubMed  Google Scholar 

  • Radman, M. 1974. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. In Molecular and environmental aspects of mutagenesis. P. L, F. Sherman, M. Miller, C. Lawrence, and W.H. Tabor, editors. Charles C. Thomas, Springfield Ill. 128–142.

    Google Scholar 

  • Rattray, A.J., and J.N. Strathern. 2003. Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu Rev Genet. 37:31–66.

    Article  CAS  PubMed  Google Scholar 

  • Reuven, N.B., G. Arad, A. Maor-Shoshani, and Z. Livneh. 1999. The mutagenesis protein UmuC is a DNA polymerase activated by UmuD’, RecA, and SSB and Is specialized for translesion replication. J Biol Chem. 274:31763–31766.

    Article  CAS  PubMed  Google Scholar 

  • Roush, A.A., M. Suarez, E.C. Friedberg, M. Radman, and W. Siede. 1998. Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutability. Mol Gen Genet. 257:686–692.

    CAS  PubMed  Google Scholar 

  • Rupp, W.D., and P. Howard-Flanders. 1968. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 31:291–304.

    Article  CAS  PubMed  Google Scholar 

  • Rupp, W.D., C.E. Wilde, D.L. Reno, and P. Howard-Flanders. 1971. Exchanges between DNA strands in ultraviolet irradiated Escherichia coli. J. Mol Biol. 61:25–44.

    Article  CAS  PubMed  Google Scholar 

  • Schenten, D., V.L. Gerlach, C. Guo, S. Velasco-Miguel, C.L. Hladik, C.L. White, E.C. Friedberg, K. Rajewsky, and G. Esposito. 2002. DNA polymerase κ deficiency does not affect somatic hypermutation in mice. Eur J Immunol. 32:3152–3160.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, L.J., and J.E. Sale. 2003. Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line. EMBO J. 22:1654–64.

    Article  CAS  PubMed  Google Scholar 

  • Stelter, P., and H.D. Ulrich. 2003. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature. 425:188–191.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, N., E. Ohashi, A. Kolbanovskiy, N.E. Geacintov, A.P. Grollman, H. Ohmori, and S. Shibutani. 2002. Translesion synthesis by human DNA polymerase καππα on a DNA template containing a single stereoisomer of dG-(+)-or dG-(−)-anti-N(2)-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene). Biochemistry. 41:6100–6.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K., T. Yonekawa, Y. Kawasaki, M. Kai, K. Furuya, M. Iwasaki, H. Murakami, M. Yanagida, and H. Okayama. 2000. Fission yeast eso1p is required for establishing sister chromatid cohesion during S phase. Mol Cell Biol. 20:3459–3469.

    CAS  PubMed  Google Scholar 

  • Tang, M., P. Pham, X. Shen, J.-S. Taylor, M. O’Donnell, R. Woodgate, and M. Goodman. 2000. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature. 404:1014–1018.

    CAS  PubMed  Google Scholar 

  • Tang, M., X. Shen, E.G. Frank, M. O’Donnell, R. Woodgate, and M.F. Goodman. 1999. UmuD’(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci U S A. 96:8919–8924.

    CAS  PubMed  Google Scholar 

  • Tissier, A., E.G. Frank, J.P. McDonald, S. Iwai, F. Hanaoka, and R. Woodgate. 2000a. Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase ι. EMBO J. 19:5259–5266.

    Article  CAS  PubMed  Google Scholar 

  • Tissier, A., P. Kannouche, M.-P. Reck, A.R. Lehmann, R.P.P. Fuchs, and A. Cordonnier. 2004. Co-localization in replication foci and interaction of human Y-family members, DNA polymerase polη and Rev1 protein. DNA repair. 3:1503–1514.

    Article  CAS  PubMed  Google Scholar 

  • Tissier, A., J.P. McDonald, E.G. Frank, and R. Woodgate. 2000b. Polι, a remarkably error-prone human DNA polymerase. Genes Dev. 14:1642–1650.

    CAS  PubMed  Google Scholar 

  • Torres-Ramos, C.A., B.L. Yoder, P.M. Burgers, S. Prakash, and L. Prakash. 1996. Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair. Proc Natl Acad Sci U S A. 93:9676–9681.

    Article  CAS  PubMed  Google Scholar 

  • Trincao, J., R.E. Johnson, C.R. Escalante, S. Prakash, L. Prakash, and A.K. Aggarwal. 2001. Structure of the catalytic core of S. cerevisiae DNA polymerase η: implications for translesion DNA synthesis. Mol Cell. 8:417–426.

    Article  CAS  PubMed  Google Scholar 

  • Uljon, S.N., R.E. Johnson, T.A. Edwards, S. Prakash, L. Prakash, and A.K. Aggarwal. 2004. Crystal structure of the catalytic core of human DNA polymerase κ Structure (Camb). 12:1395–404.

    CAS  Google Scholar 

  • Ulrich, H.D., and S. Jentsch. 2000. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19:3388–3397.

    Article  CAS  PubMed  Google Scholar 

  • Vaisman, A., E.G. Frank, J.P. McDonald, A. Tissier, and R. Woodgate. 2002. poliota-dependent lesion bypass in vitro. Mutat Res. 510:9–22.

    CAS  PubMed  Google Scholar 

  • Venclovas, C., and M.P. Thelen. 2000. Structure-based predictions of rad1, rad9, hus1 and rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 28:2481–2493.

    Article  CAS  PubMed  Google Scholar 

  • Vidal, A.E., P.P. Kannouche, V.N. Podust, W. Yang, A.R. Lehmann, and R. Woodgate. 2004. PCNA-dependent coordination of the biological functions of human DNA polymerase ι. J Biol Chem. 279: 48360–48368

    Article  CAS  PubMed  Google Scholar 

  • Wagner, J., H. Etienne, R. Janel-Bintz, and R.P.P. Fuchs. 2002. Genetics of mutagenesis in E. coli: various combinations of translesion polymerases (Pol II, IV, and V) deal with lesion/sequence diversity. DNA Repair. 1:159–167.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, J., S. Fujii, P. Gruz, T. Nohmi, and R.P. Fuchs. 2000. The beta clamp targets DNA polymerase IV to DNA and strongly increases its processivity. Embo Rep. 1:484–488.

    CAS  PubMed  Google Scholar 

  • Wagner, J., P. Gruz, S.R. Kim, M. Yamada, K. Matsui, R.P. Fuchs, and T. Nohmi. 1999. The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol Cell. 4:281–286.

    Article  CAS  PubMed  Google Scholar 

  • Warbrick, E. 2000. The puzzle of PCNA’s many partners. Bioessays. 22:997–1006.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, K., S. Tateishi, M. Kawasuji, T. Tsurimoto, H. Inoue, and M. Yamaizumi. 2004. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23.

    Google Scholar 

  • Xiao, W., B.L. Chow, S. Broomfield, and M. Hanna. 2000. The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways. Genetics. 155:1633–41.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., X. Wu, D. Guo, O. Rechkoblit, J.S. Taylor, N.E. Geacintov, and Z. Wang. 2002. Lesion bypass activities of human DNA polymerase μ. J Biol Chem. 277:44582–7.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., F. Yuan, X. Wu, M. Wang, O. Rechkoblit, J.S. Taylor, N.E. Geacintov, and Z. Wang. 2000. Error-free and error-prone lesion bypass by human DNA polymerase κ in vitro. Nucleic Acids Res. 28:4138–4146.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Green, C.M., Lehmann, A.R. (2005). Translesion Synthesis And Errorprone Polymerases. In: Back, N., Cohen, I.R., Kritchevsky, D., Lajtha, A., Paoletti, R., Nigg, E.A. (eds) Genome Instability in Cancer Development. Advances in Experimental Medicine and Biology, vol 570. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3764-3_7

Download citation

Publish with us

Policies and ethics