Skip to main content

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • ADAMS, W. T. and R. J. JOLY, 1980 Allozyme studies in loblolly pine seed orchards: clonal variation and frequency of progeny due to self-fertilization. Silvae Genet. 29: 1-4.

    Google Scholar 

  • ALLARD, R. W., S. K. JAIN, and P. L. WORKMAN, 1968 The genetics of inbreeding populations. Advances in Genetics 14: 55-131.

    Google Scholar 

  • AUCKLAND, L.D., T. BUI, Y. ZHOU, M. SHEPHERD and C. G. WILLIAMS, 2002. Conifer Microsatellite Handbook . Corporate Press, Raleigh NC. 57 p.

    Google Scholar 

  • AVISE JC., 1992 Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63: 62-76.

    CAS  Google Scholar 

  • BANKS J., BIRKEY C JR., 1985 Chloroplast DNA diversity is low in a wild plant, Lupinus texensis. Proc. Natl. Acad. Sci. USA. 82: 6950-6954.

    CAS  PubMed  Google Scholar 

  • BERGMANN, F. and W. RUETZ, 1991 Isozyme genetic variation and heterozygosity in random tree samples and selected orchard clones from the same Norway spruce poplations. Forest Ecology and Management 46: 39-47.

    Google Scholar 

  • BETANCOURT, J. L., W. S. SCHUSTER, J. B. MITTON, and R. S. ANDERSON, 1991 Fossil and genetic history of a pinyon pine (Pinus edulis) isolate. Ecology 72: 1685-1697.

    Google Scholar 

  • BETANCOURT, J. L., T. R. VAN DEVENDER, and P. S. MARTIN, 1990 Packrat Middens: The last 40,000 Years of Biotic Change. The University of Arizona Press, Tucson.

    Google Scholar 

  • BONNICKSEN, T. M., 2000 America’s Ancient Forests: From the Ice Age to the Age of Discovery. John Wiley and Sons, Inc. New York.

    Google Scholar 

  • BOYLE, T. J. B. and E. K. MORGENSTERN, 1986 Estimates of outcrossing rates in six populations of black spruce in central New Brunswick. Silvae Genet. 35: 102-106.

    Google Scholar 

  • BRAMLETT, D. and T. POPHAM, 1971 Model relating unsound seed and embryonic lethals in self-pollinated pines. Silvae Genetica 20: 192-193.

    Google Scholar 

  • BROWN, A. H. D., 1990 Genetic characterization of plant mating systems. pp. 145-162 in A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir. (eds.) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Inc., Sunderland, Ma.

    Google Scholar 

  • BUCHHOLZ, J., 1918 Suspensor and early embryo of Pinus. Botanical Gazette 66: 185-228.

    Google Scholar 

  • BUCHHOLZ, J., 1920 Embryo development and polyembryony in relation to the phylogeny of conifers. American Journal of Botany 7: 125-145.

    Google Scholar 

  • BUCHOLZ, J. T., 1922 Developmental selection in vascular plants. Botanical Gazette 73: 249-286.

    Google Scholar 

  • BUSH, R. M. and P. E. SMOUSE, 1991 The impact of electrophoretic genotype on life history traits in Pinus taeda. Evolution 45: 481-498.

    Google Scholar 

  • BUSH, R. M. and P. E. SMOUSE, 1992 Evidence for the adaptive significance of allozymes in forest trees. New Forests 6: 179-196.

    Google Scholar 

  • CHAISURISRI, K. and Y. ELKASSABY, 1994 Genic diversity in a seed production population versus natural populations. Biodiversity and Conservation 3: 512-523.

    Google Scholar 

  • CHARLESWORTH, D. and B. CHARLESWORTH, 1987 Inbreeding depression and its evolutionary consequences. Ann. Rev. Ecol. Syst. 18: 237-268.

    Google Scholar 

  • CHARLESWORTH, B., M. MORGAN and D. CHARLESWORTH 1991 Multilocus models of inbreeding depression with synergistic selection and partial self-fertilization. Genetical Research 57: 177-194.

    Google Scholar 

  • CHELIAK, W. M., B. P. DANCIK, K. MORGAN, F. C. H. YEH, and C. STROBECK, 1985 Temporal variation of the mating system in a natural population of jack pine. Genetics 109: 569-584.

    PubMed  Google Scholar 

  • CLEGG, M. T. 1980, Measuring plant mating systems. BioScience 30: 814-818.

    Google Scholar 

  • CROW, J. F. and M. J. SIMMONS, 1983 The mutation load in Drosophila. pp. 1-35 in The Genetics and Biology of Drosophila. Volume 3c, M. Ashburner, H. L. Carson, J. N. Thompson. Academic Press, London.

    Google Scholar 

  • CRUMPACKER, D. W., 1967 Genetic loads in maize (Zea mays L. and other cross-fertilized plants and animals. Evol. Biol. 1: 306-423.

    Google Scholar 

  • DENTI, D. and D. J. SCHOEN, 1988 Self-fertilization rates in white spruce: effect of pollen and seed production. J. Hered. 79: 284-288.

    Google Scholar 

  • DENG, H. and Y.-X. FU, 1998 Conditions for positive and negative correlations between fitness and heterozygosity in equilibrium populations. Genetics 148: 1333-1340.

    CAS  PubMed  Google Scholar 

  • DONG, J. and D. B. WAGNER, 1993 Taxonomic and population differentiation of mitochondrial DNA diversity in Pinus banksiana and Pinus contorta. Theor. Appl. Genet. 86: 573-8.

    Google Scholar 

  • DONG, J. and D. B. WAGNER, 1994 Paternally inherited chloroplast polymorphism in Pinus: estimation of diversity and population subdivision, and tests of disequilibrium with a maternally inherited mitochondrial polymorphism. Genetics 136: 1187-94.

    CAS  PubMed  Google Scholar 

  • DYER, R. and V. SORK, 2001 Pollen pool heterogeneity in shortleaf pine, Pinus echinata Mill. Mol. Ecol. 10: 859-866.

    CAS  PubMed  Google Scholar 

  • EANES, W. F., 1999 Analysis of selection on enzyme polymorphisms. Ann. Rev. Ecol. Syst. 30: 301-326.

    Google Scholar 

  • ECHT C.S., G. G. VENDRAMIN, C. D. NELSON and P. MARQUARDT, 1999 Microsatellite DNA as shared genetic markers among conifer species. Can. J. For. Res. 29: 365-371.

    CAS  Google Scholar 

  • ELKASSABY, Y. and K. RITLand, 1996 Impact of selection and breeding on the genetic diversity of Douglas-fir. Biodiversity and Conservation 5: 795-813.

    Google Scholar 

  • ELKASSABY, Y. A., K. RITLand, A. M. K. FASHLER and W. J. B. DEVITT, 1988 The role of reproductive phenology upon the mating system of a Douglas-fir seed orchard. Silvae Genet. 37: 76-82.

    Google Scholar 

  • ELKASSABY, Y. A., F. C. YEH, and O. SZIKLAI, 1981 Estimation of the outcrossing rate of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) using allozyme polymorphisms. Silvae Genet. 30: 182-184.

    Google Scholar 

  • Elsik, C.G., V. T. Minihan, A. M. Scarpa, S. E. Hall and C. G. Williams, 2000. Low-copy microsatellite markers for Pinus taeda L.Genome 43: 550-555.

    CAS  Google Scholar 

  • ENNOS, R. A., 1994 Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72: 250-259.

    Google Scholar 

  • EPPERSON, B. K. and R. W. ALLARD, 1984 Allozyme analysis of the mating system in lodgepole pine populations. J. Hered. 75: 212-214.

    Google Scholar 

  • ERICKSON, V. J. and W. T. ADAMS, 1989 Mating success in a coastal Douglas-fir seed orchard as affected by distance and floral phenology. Can. J. For. Res. 19: 1248-1255.

    Google Scholar 

  • ERICKSON, V. J. and W. T. ADAMS 1990 Mating system variation among individual ramets in a Douglas-fir seed orchard. Can. J. For. Res. 20: 1672-1675.

    Google Scholar 

  • FARRIS, M. A. and J. B. MITTON, 1984 Population density, outcrossing rate, and heterozygote superiority in ponderosa pine. Evolution 38: 1151-1154.

    Google Scholar 

  • FOWLER, D. P., 1965 Effects of inbreeding in red pine, Pinus resinosa Ait. III. Factors affecting natural selfing. Silvae Genet. 14: 36-46.

    Google Scholar 

  • FRANKEL, R., 1983 Heterosis: Reappraisal of Theory and Practice. Springer-Verlag, Berlin. 290 pp.

    Google Scholar 

  • FRANKLIN, E., 1969 Inbreeding depression in metrical traits of loblolly pine (Pinus taeda L.) as a result of self-pollination. Raleigh NC., School of Forest Resources, North Carolina State University.

    Google Scholar 

  • FRANKLIN, E. C., 1970 Survey of mutant forms and inbreeding depression in species of the family Pinaceae. USDA For. Serv. Res. Pap. SE-61.

    Google Scholar 

  • FRANKLIN, E. C., 1972 Genetic load in loblolly pine. Am. Nat. 106: 262-265.

    Google Scholar 

  • FRIEDMAN, S. T. and W. T. ADAMS, 1985a Levels of outcrossing in two loblolly pine seed orchards. Silvae Genetica 34: 157-162.

    Google Scholar 

  • FRIEDMAN, S. T. and W. T. ADAMS, 1985b Estimation of gene flow into two seed orchards of loblolly pine (Pinus taeda L.). Theor. Appl. Genet. 69: 609-615.

    Google Scholar 

  • FURNIER, G. R. and W. T. ADAMS, 1986 Mating system in natural populations of Jeffrey pine. Amer. J. Bot. 73: 1009-1015.

    Google Scholar 

  • GIBSON, J. P. and J. L. HAMRICK, 1991 Heterogeneity in pollen allele frequencies among cones, whorls, and trees of table mountain pine (Pinus pungens). Am. J. Bot. 78: 1244-1251.

    Google Scholar 

  • GRIFFIN, R. and D. LINDGREN, 1985 Effect of inbreeding on production of filled seed in Pinus radiata -experimental results and a model of gene action. Theor. Appl. Genet. 71: 334-343.

    Google Scholar 

  • HAMRICK J. L. and M. J. W. GODT, 1989 Allozyme diversity in plant species. pp. 43-63 In A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir. (eds.) Plant Population Genetics. Breeding and Genetic Resources. Sinauer Press, Sunderland, MA.

    Google Scholar 

  • HAMRICK, J. L., Y. B. LINHART, and J. B. MITTON, 1979 Relationship between life history parameters and electrophoretically-detectable genetic variability in plants. Ann. Rev. Ecol. Syst. 10: 173-200.

    Google Scholar 

  • HAMRICK, J. L., J. B. MITTON, and Y. B. LINHART, 1981 Levels of genetic variation in trees: influence of life history characteristics. In M. T. Conkle (ed.) Isozymes of North American Forest Trees and Forest Insects. USDA Gen. Tech. Rep. PSW-48.

    Google Scholar 

  • HAMRICK, J. L., A. F. SCHNABEL, and P. V. WELLS, 1994 Distribution of genetic diversity within and among populations of Great Basin conifers. pp. 147-161 in K. T. Harper, L. L. St. Clair, K. H. Thorne, and W. M. Hess (eds.) Natural History of the Colorado Plateau and Great Basin University Press of Colorado, Niwot, CO.

    Google Scholar 

  • HEWITT G. M., 2000 The genetic legacy of the Quaternary ice ages. Nature 405: 907-913.

    CAS  PubMed  Google Scholar 

  • HONG, Y.-P., V. D. HIPKINS and S. H. STRAUSS, 1993 Chloroplast DNA diversity among trees, populations and species in the California closed-cone pines (Pinus radiata, Pinus muricata, and Pinus attenuata). Genetics 135: 1187-96.

    CAS  PubMed  Google Scholar 

  • INNES, D. and G. RINGIUS, 1990 Mating system and genetic structure of two populations of white spruce (Picea glauca) in eastern Newfoundland. Canadian Journal Botany 68: 1661-1666.

    Google Scholar 

  • JARAMILLOCORREA, J. P., J. BEAULIEU and J. BOUSQUET, 2004 Variation in mitochondrial DNA reveals multiple distant glacial refugia in black spruce (Pice mariana), a transcontinental North American conifer. Mol. Ecol. 13: 2735-2747.

    CAS  Google Scholar 

  • JOHANSEN, A. D. and R. G. LATTA, 2003 Mitochondrial haplotype distribution, seed dispersal and patterns of postglacial expansion of ponderosa pine. Mol. Ecol. 12: 293-298.

    CAS  PubMed  Google Scholar 

  • KATUL G., C. G. WILLIAMS, M. SIQUEIRA, D. POGGI, A. PORPORATO, H. MCCARTHY and R. OREN. 2006. Dispersal of transgenic conifer pollen. Chapter 8. Editor: C.G. Williams. In: Landscapes, Genomics and Transgenic Conifers. Springer Publishers.

    Google Scholar 

  • KELLEY, S. T. and J. B. MITTON, 1998 Strong differentiation in mitochondrial DNA of Dendroctonus brevicomis (Coleoptera: Scolytidae) populations on different subspecies of ponderosa pine. Ann. Ent. Soc. Am. 92: 193-197.

    Google Scholar 

  • KING, J. N., B. P. DANCIK, and N. K. DHIR, 1984 Genetic structure and mating system of white spruce (Picea glauca) in a seed production area. Can. J. For. Res. 14: 639-643.

    Google Scholar 

  • KLEKOWSKI, E. and N. KAZARINOVAFUKSHANSKY, 1984 Shoot apical meristems and mutation: selective loss of disadvantageous cell genotypes. Am. J. Bot. 71: 28-34.

    Google Scholar 

  • KNOWLES, P., G. R. FURNIER, M. A. ALEKSIUK, and D. J. PERRY, 1987 Significant levels of self-fertilization in natural populations of tamarack. Can. J. Bot. 65: 1087-1091.

    Google Scholar 

  • KOSKI, V., 1971 Embryonic lethals of Picea abies and Pinus sylvestris. Commun. Institute of Forestalia Fennica 75: 1-30.

    Google Scholar 

  • KUITTINEN, H. and O. SAVOLAINEN 1992 Picea omorika is self-fertile but outcrossing conifer. Heredity 68: 183-187.

    Google Scholar 

  • KUTIL, B.L. and CLAIRE G. WILLIAMS, 2001 Triplet repeat microsatellites shared among hard and soft pines. Journal of Heredity 92: 327-332.

    CAS  PubMed  Google Scholar 

  • KONNERT, M., and F. BERGMANN, 1995 The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst. Evol. 196: 19-30.

    Google Scholar 

  • LATTA, R. and K. RITLand, 1994 The relationship between inbreeding depression and prior inbreeding among populations of four Mimulus taxa. Evolution 48: 806-817.

    Google Scholar 

  • Land E. R. and D. W. SCHEMSKE, 1985 The evolution of self fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39: 24-40.

    Google Scholar 

  • LATTA, R. G., Y. B. LINHART, D. FLECK, and M. ELLIOT, 1998 Direct and indirect estimates of seed versus pollen movement within a population of ponderosa pine. Evolution 52: 61-67.

    Google Scholar 

  • LATTA, R. G and J. B. MITTON, 1997. A comparison of population differentiation across four classes of gene marker in limber pine (Pinus flexilis James). Genetics 146: 1153-1163.

    CAS  PubMed  Google Scholar 

  • LATTA R.G. and J. B. MITTON, 1999 Historical separation and present gene flow through a zone of secondary contact in ponderosa pine. Evolution 53: 769-776.

    Google Scholar 

  • LEDIG, F., V. JACOBCERVANTES, ETAL., 1997 Recent evolution and divergence among populations of a rare Mexican endemic, Chihuahua spruce, following Holocene climatic warming. Evolution 51: 1815-1827.

    Google Scholar 

  • LERNER, I. M., 1954 Genetic Homeostasis. Oliver and Boyd, Edinburgh. 134 pp.

    Google Scholar 

  • LINHART, Y. B., J. B. MITTON, K. B. STURGEON, and M. L. DAVIS, 1981 Genetic variation in space and time in a population of ponderosa pine. Heredity 46: 407-426.

    Google Scholar 

  • LYNCH, M., 1988 The rate of polygenic mutation. Genet. Res. Camb. 51:137-148.

    CAS  Google Scholar 

  • LYNCH, M., 1997 Mutation accumulation in nuclear, organelle, and prokaryotic transfer RNA genes. Mol. Biol. Evol. 14: 914-925.

    CAS  PubMed  Google Scholar 

  • LIEPELT, S., R. BIALOZYT and B. ZIEGENHAGEN, 2002 Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc. Natl. Acad. Sci. USA 99: 14590-14594.

    CAS  PubMed  Google Scholar 

  • LINHART, Y. B., J. B. MITTON, K. B. STURGEON, and M. L. DAVIS, 1981 Genetic variation in space and time in a population of ponderosa pine. Heredity 46: 407-426.

    Google Scholar 

  • LINHART, Y. B. and J. B. MITTON, 1985 Relationships among reproduction, growth rate, and protein heterozygosity in ponderosa pine Amer. J. Bot. 72: 181-184.

    Google Scholar 

  • LOVELESS, M. D. and J. L. HAMRICK, 1984 Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 15: 65-95.

    Google Scholar 

  • LYNCH, M. 1988. The rate of polygenic mutation. Genet. Res. Camb. 51: 137-148.

    CAS  Google Scholar 

  • MATOS, J. 1992. Evolution within the Pinus montezumae complex of Mexico: population subdivision, hybridization, and taxonomy. Ph.D. Thesis. Washington University, St. Louis.

    Google Scholar 

  • MITTON, J. B., 1983 Conifers. pp. 443-472 in S. Tanksley and T. Orton (eds) Isozymes in Plant Genetics and Breeding, Part B. Elsevier.

    Google Scholar 

  • MITTON, J. B., 1992 The dynamic mating systems of conifers. New Forests 6: 197-216.

    Google Scholar 

  • MITTON, J. B., 1997 Selection in Natural Populations. Oxford University Press, New York. 272 pp.

    Google Scholar 

  • MITTON, J. B. and K. L. DURAN, 2004 Genetic variation in piñon pine, Pinus edulis, associated with summer precipitation. Mol. Ecol. 13: 1259-1264.

    CAS  PubMed  Google Scholar 

  • MITTON, J. B. and R. M. JEFFERS, 1989 The genetic consequences of mass selection for growth rate in Engelmann spruce. Silvae Genetica 38: 6-12.

    Google Scholar 

  • MITTON, J. B. and M. C. GRANT, 1984 Associations among protein heterozygosity, growth rate, and developmental homeostasis. Ann. Rev. Ecol. Syst. 15: 479-499.

    Google Scholar 

  • MITTON, J. B. and B. A. PIERCE, 1980 The distribution of individual heterozygosity in natural populations. Genetics 95: 1043-1054.

    PubMed  Google Scholar 

  • MITTON, J. B., B. R. KREISER, and R. G. LATTA, 2000a Glacial refugia of limber pine (Pinus flexilis James) inferred from the population structure of mitochondrial DNA. Mol. Ecol. 9: 91-97.

    CAS  Google Scholar 

  • MITTON, J. B., B. R. KREISER, and G. E. REHFELDT, 2000b Primers designed to amplify a mitochondrial nad1 intron in ponderosa pine, Pinus ponderosa, limber pine, P. flexilis, and Scots pine, P. sylvestris. Theor. Appl. Genet. 101: 1269-1272.

    CAS  Google Scholar 

  • MITTON, J. B., Y. B. LINHART, J. L. HAMRICK, and J. S. BECKMAN, 1977 Observations on the genetic structure and mating system of ponderosa pine in the Colorado Front Range. Theor. Appl. Genet. 7: 5-13.

    Google Scholar 

  • MORAN, G. F., J. C. BELL, and A. C. MATHESON 1980 The genetic structure and levels of inbreeding in a Pinus radiata D. Don seed orchard. Silvae Genet. 29:190-193.

    Google Scholar 

  • MORGANTE, M., G. VENDRAMIN, et al., 1991 Effects of stand density on outcrossing rate in Norway spruce (Picea abies) populations. Can. J. Bot. 69: 2704-2708.

    Google Scholar 

  • MUONA, O. and A. HARJU, 1989 Effective population sizes, genetic variability and mating system in a natural stands and seed orchards of Pinus sylvestris. Silvae Genet. 38: 221-228.

    Google Scholar 

  • MULLER, G., 1977a Cross fertilization in a conifer stand inferred from gene-markers in seeds. Silvae Genet. 26: 223-226.

    Google Scholar 

  • MULLER, G., 1977b Investigations of the degree of natural self- fertilization in stands of Norway spruce (Picea abies (L.) Darst.) and Scots pine (Pinus sylvestris L.). Silvae Genetica 26: 207-217.

    Google Scholar 

  • NEALE, D. B. and W. T. ADAMS, 1985a Allozyme and mating system variation in balsam fir (Abies balsamea) across a continuous elevational transect. Can. J. Bot. 63: 2448-2453.

    Google Scholar 

  • NEALE, D. B. and W. T. ADAMS, 1985b The mating system in natural and shelterwood stands of Douglas-fir. Theor. Appl. Genet. 71: 201-207.

    Google Scholar 

  • NEALE, D. B., K. A. MARSHALL, and D. E. HARRY, 1991. Inheritance of chloroplast and mitochondrial DNA in incense-cedar (Calocedrus decurrens). Can. J. For. Res. 21: 717-720.

    CAS  Google Scholar 

  • NEALE, D. B., K. A. MARSHALL, and R. R. SEDEROFF, 1989 Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens. D. Don Endl. Proc. Natl. Acad. Sci. USA 86: 9347-9349.

    CAS  Google Scholar 

  • NEALE, D. B., N. C. WHEELER, and R. W. ALLARD, 1986 Paternal inheritance of chloroplast DNA in Douglas-fir. Can. J. For. Res. 16: 1152-1154.

    CAS  Google Scholar 

  • O'CONNELL, L. (2003). The evolution of inbreeding in western red cedar (Thuja plicata: Cupressaceae). Department of Forest Sciences, Faculty of Forestry. Vancouver, BC, University of British Columbia: 162 p.

    Google Scholar 

  • PALMER, J. D., 1985 Evolution of chloroplast and mitochondrial DNA in plants and algae. In Molecular Evolutionary Genetics, R. J. MacIntyre (ed.) New York: Plenum Press, pp. 131-240.

    Google Scholar 

  • PALMER, J. D., 1990 Contrasting modes and tem pos of genome evolution in land plant organelles. Trends Genet. 6: 115-120.

    CAS  PubMed  Google Scholar 

  • PALMER, J. D., 1992 Mitochondrial DNA in plant systematics: Applications and limitations. In Molecular Systematics of Plants, P. S. Soltis, J. E. Soltis, and J. J. Doyle (eds). New York: Chapman & Hall, pp. 36-48.

    Google Scholar 

  • PERRY, D. J. and P. KNOWLES, 1990 Evidence of high self- fertilization in natural populations of eastern white cedar (Thuja occidentalis). Can. J. Bot. 68: 663-668.

    Google Scholar 

  • RICHARDS, A., 1997 Plant breeding systems. London, Chapman & Hall.

    Google Scholar 

  • RICHARDSON, B. A., J. BRUNSFELD and N. B. KLOPFENSTEIN, 2002 DNA from bird-dispersed seed and wind-disseminated pollen provides insights into postglacial colonization and population geneti structure of whitebark pine (Pinus albicaulis). Mol. Ecol. 11: 215-227.

    CAS  PubMed  Google Scholar 

  • SAVOLAINEN, O. and P. HEDRICK, 1995 Heterozygosity and fitness: no associations in Scots pine. Genetics 140: 755-766.

    CAS  PubMed  Google Scholar 

  • SARVAS, R., 1962 Investigations on the flowering and seed crop of Pinus silvestris. Institute Forestalis Fennica Comm. 53: 1-198.

    Google Scholar 

  • SCHAAL, B. A., S. L. O’KANE and S. H. ROGSTAD, 1991 DNA variation in plant populations. Trends Ecol. Evol. 6: 329-33.

    Google Scholar 

  • SCHMIDT, P. S., D. D. DUVERNELL and W. F. EANES, 2000 Adaptive evolution of a candidate gene fro aging in Drosophila. Proc. Natl. Acad. Sci. USA 97: 10861-10865.

    CAS  PubMed  Google Scholar 

  • SCHOEDER, S., 1989 Outcrossing rates and seed characteristics in damaged natural populations of Abies alba. Silvae Genet. 38: 185-189.

    Google Scholar 

  • SCHUSTER, W. S., D. L. ALLES, and J. B. MITTON, 1989. Gene flow in limber pine: evidence from pollination phenology and genetic differentiation along an elevational transect. Amer. J. Bot. 76: 1395-1403.

    Google Scholar 

  • SCHUSTER, W. S. F. and J. B. MITTON, 2000 Paternity and gene dispersal in limber pine (Pinus flexilis James). Heredity 84: 348-361.

    CAS  PubMed  Google Scholar 

  • SCOTTI, I., F. MAGNI, R. FINK, W. POWELL, G. BINELLI and P. E. HEDLEY, 2000 Microsatellite repeats are not randomly distributed within Norway spruce (Picea abies K.) expressed sequences. Genome 43: 41-46.

    CAS  PubMed  Google Scholar 

  • SHAW, D. V. and R. W. ALLARD, 1981 Analysis of mating system parameters and population structure in Douglas-fir using single- locus and multilocus methods. pp 18-22 in M. T. Conkle (ed.) Isozymes of North American Forest Trees and Forest Insects. USDA For. Serv. Gen. Tech. Rep. PSW-48.

    Google Scholar 

  • SHAW, D. V. and R. W. ALLARD, 1982 Estimation of outcrossing rates in Douglas fir using allozyme markers. Theor. Appl. Genet. 62: 113-120.

    Google Scholar 

  • SHEA, K. L., 1987 Effects of population structure and cone production on outcrossing rates in Engelmann spruce and subalpine fir. Evolution 41: 124-136.

    Google Scholar 

  • SHEN, H. -H., D. RUDIN and D. LINDGREN, 1981 Study of pollination pattern in a scots pine seed orchard by means of isozyme analysis. Silvae Genet: 30: 7-15.

    Google Scholar 

  • SHEPHERD, M., M. CROSS, T.L. MAGUIRE, M.J. DIETERS, C. G. WILLIAMS and R.J. HENRY, 2002 Transpecific microsatellites for hard pines. Theor. Appl. Genet. 104: 819-827.

    CAS  PubMed  Google Scholar 

  • SIEGISMUND, H. and E. KJAER, 1997 Outcrossing rates in two stands of noble fir (Abies procera Rehd.) in Denmark. Silvae Genet. 46: 144-146.

    Google Scholar 

  • SIMMONS, M. J. and J. F. CROW, 1977 Mutations affecting fitness in Drosophila populations. Ann. Rev. Genet. 11: 49-78.

    CAS  PubMed  Google Scholar 

  • SINCLAIR, W. T., J. D. MORMAN and R. A. ENNOS, 1999 The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. Mol. Ecol. 8: 83-88.

    Google Scholar 

  • SKINNER, D., 1992 Ovule and embryo development, seed production and germination in orchard grown control pollinated loblolly pine (Pinus taeda L.) from coastal South Carolina. Department of Biology. Victoria, BC, University of Victoria: 88.

    Google Scholar 

  • SNYDER, T. P., D. A. STEWARD, and A. F. STRICKLER, 1985 Temporal analysis of breeding structure in jack pine (Pinus banksiana Lamb.). Canadian J. For. Res. 15: 1159-1166.

    Google Scholar 

  • SOKOL, K.A. and C. G. WILLIAMS, 2005 Evolution of a triplet repeat in a conifer. Genome 48: 417-426.

    CAS  PubMed  Google Scholar 

  • SORENSEN, F. C., 1969 Embryonic genetic load in coastal Douglas fir, Pseudotsuga menziessii var. menziessii. Am. Nat. 103: 389-398.

    Google Scholar 

  • SORENSEN, F. C., 1971 Estimate of self-fertility in coastal Douglas-fir from inbreeding studies. Silvae. Genet. 20: 115-120.

    Google Scholar 

  • SORENSEN, F. C., 1982 The role of polyembryonal vitality in the genetic system of conifers. Evolution 36: 725-733.

    Google Scholar 

  • SORENSEN, F. and R. S. MILES, 1982 Inbreeding depression in height, height growth, and survival of Douglas-fir, ponderosa pine, and noble fir to 10 years of age. For. Sci. 28: 283-292.

    Google Scholar 

  • SPERISEN, C., U. BÜCHLER, F. GUGERLI, G. MÁTYÁS, T. GEBUREK and G. G. VENDRAMIN, 2001 Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol. Ecol. 10: 257-263.

    CAS  PubMed  Google Scholar 

  • STAUFFER, A. and W. ADAMS, 1993 Allozyme variation and mating system of three Douglas-fir stands in Switzerland. Silvae Genet. 42: 254-258.

    Google Scholar 

  • STRAUSS, S. 1986 Heterosis at allozyme loci under inbreeding and crossbreeding in Pinus attentuata. Genetics 113: 115-134.

    CAS  PubMed  Google Scholar 

  • STRAUSS, S. and W. LIBBY1987 Allozyme heterosis in radiata pine is poorly explained by overdominance. Amer. Nat. 130: 879-890.

    Google Scholar 

  • STRAUSS, S. H., Y.-P. HONG and V. D. HIPKINS, 1993 High levels of population differentiation for mitochondrial DNA haplotypes in Pinus radiata, muricata, and attenuata. Theor. Appl. Genet. 85: 6065-71.

    Google Scholar 

  • STRAUSS, S. H., D. B. NEALE, and D. B. WAGNER, 1989. Genetics of the chloroplast in conifers. Journal of Forestry 87: 11-7.

    Google Scholar 

  • WAGNER DB., 1992 Nuclear, chloroplast, and mitochondrial DNA polymorphisms as biochemical markers in population genetic analyses of forest trees. New Forests 6: 373-390.

    Google Scholar 

  • WAGNER D. B., G. R. FURNIER, M. A. SAGHAIMAROOF, S. M. WILLIAMS, B. P. DANCIK BP and R. W. ALLARD, 1987 Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc. Natl. Acad. Sci. USA 84: 2097-200.

    CAS  PubMed  Google Scholar 

  • WILLIAMS, C.G. and O. SAVOLAINEN, 1996 Inbreeding depression in conifers: implications for breeding strategy. Forest Science 42: 102-117.

    Google Scholar 

  • WILLIAMS, C.G., S. L. LADEAU, R.A. OREN and G.G. KATUL. 2006 . Modeling seed dispersal distances: implications for transgenic Pinus taeda. Ecological Applications (in press).

    Google Scholar 

  • WRIGHT, J. W., 1976 Introduction to forest genetics. Academic Press, New York. WRIGHT S. 1931., Evolution in Mendelian populations. Genetics 16: 97-159.

    Google Scholar 

  • WRIGHT, S., 1951 The genetical structure of populations. Ann. Eugen. 15: 323-354.

    Google Scholar 

  • WRIGHT, S., 1969. Evolution and the Genetics of Populations. Volume 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago. 511 pp.

    Google Scholar 

  • WRIGHT, S., 1977 Evolution and Genetics of Populations. Vol. 3. Experimental Results and Evolutionary Deductions. University of Chicago Press, Chicago. 613 pp.

    Google Scholar 

  • ZHOU, Y., T. BUI, L. D. AUCKLAND and C. G. WILLIAMS, 2001 Undermethylation as a source of microsatellites in large plant genomes. Genome 46: 809-816

    Google Scholar 

  • ZHOU Y, T. BUI, L.D. AUCKLAND and C. G. WILLIAMS, 2002 Direct fluorescent primers are superior to M13-tailed primers for automated genotyping of Pinus taeda microsatellites. Biotechniques 32: 46-52.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Mitton, J., Williams, C. (2006). Gene Flow in Conifers. In: Williams, C. (eds) Landscapes, Genomics and Transgenic Conifers. Managing Forest Ecosystems, vol 9. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3869-0_9

Download citation

Publish with us

Policies and ethics