Skip to main content

Motility in Tumor Invasion and Metastasis — An Overview

  • Chapter
Cell Motility in Cancer Invasion and Metastasis

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 8))

Abstract

Most cancer morbidity and mortality derives from the dissemination of the tumor cells and subsequent growth in ectopic locations. Local invasion of adjacent normal tissue and adnexia compromise homeostatic functions and prevent surgical or radiological extirpation of the tumor. Recent investigations highlight the central role that induced motility plays in promoting this spread. Metastatic seeding and growth, that dramatically increase tumor burden and relegate local therapies, require additional complex acquired behaviors including resistance to anoikis and shear stresses. Still, tumor cell motility and associated biophysical processes such as adhesion modulation, are central to this terminal progression. Our growing understanding of the function of motility, and key molecular switches that govern this behavior, provide new targets for rationale therapeutics aimed at arresting tumors in their tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engebraaten O, Bjerkvig R, Pedersen PH, OD Laerum. Effects of EGF, bFGF, NGF and PDGF(bb) on cell proliferative, migratory and invasive capacities of human braintumour biopsies in vitro. Int. J. Cancer 1993, 53: 209–214.

    PubMed  CAS  Google Scholar 

  2. Wells A. Tumor invasion: role of growth factor-induced cell motility. Adv. Cancer Res. 2000, 78: 31–101.

    PubMed  CAS  Google Scholar 

  3. Stetler-Stevenson WG, Yu A. Proteases in invasion: matrix metalloproteinases. Sem. Cancer Biol. 2001, 11: 143–152.

    CAS  Google Scholar 

  4. Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 2001, 11: S37–43.

    PubMed  CAS  Google Scholar 

  5. Chambers AF, MacDonald IC, Schmidt EE, Morris VL, Groom AC. Clinical targets for anti-metastasis therapy. Adv. Cancer Res. 2000, 79: 91–121.

    PubMed  CAS  Google Scholar 

  6. Fidler IJ. The pathogenesis of cancer metastasis: the’ seed and soil’ hypothesis revisited. Nat. Rev. Cancer 2003, 3: 453–458.

    PubMed  CAS  Google Scholar 

  7. Cristofanilli M, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J.Med. 2004, 351: 781–791.

    PubMed  CAS  Google Scholar 

  8. Wyckoff JB, Segall JE, Condeelis JS. The collection of the motile population of cells from a living tumor. Cancer Res. 2000, 60: 5401–5404.

    PubMed  CAS  Google Scholar 

  9. Condeelis J, Segall JE. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 2003, 3: 921–930.

    PubMed  CAS  Google Scholar 

  10. Kim H, Turner T, Kassis J, Souto J, Wells A. EGF receptor signaling in prostate development. Histol. Histopathol. 1999, 14: 1175–1182.

    PubMed  CAS  Google Scholar 

  11. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 2003, 112: 1776–1784.

    PubMed  CAS  Google Scholar 

  12. Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 2004, 118: 277–279.

    PubMed  CAS  Google Scholar 

  13. Yang J, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004, 117: 927–939.

    PubMed  CAS  Google Scholar 

  14. Edme N, Downward J, Thiery J-P, Boyer B. Ras induces NBT-II epithelial cell scattering through the coordinate activaties of rac and MAPK pathways. J. Cell Sci. 2002, 115: 2591–2601.

    PubMed  CAS  Google Scholar 

  15. Birchmeier C, Birchmeier W, Gherardi E, VandeWoude GF. Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 2003, 4: 915–925.

    PubMed  CAS  Google Scholar 

  16. Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat. Rev. Mol. Cell Biol. 2003, 4: 657–665.

    PubMed  Google Scholar 

  17. Hordijk PL, tenKlooster JP, vanderKammen RA, Michiels F, Oomen LCJM, Collard JG. Inhibition of invasion of epithelial cells by Tiam1-rac signaling. Science 1997, 278: 1464–1466.

    PubMed  CAS  Google Scholar 

  18. Jones FS, Jones PL. The tenascin family of ECM glycoproteins: structure, function and regulation during embryonic development and tissue remodeling. Dev. Dyn. 2000, 218: 235–259.

    PubMed  CAS  Google Scholar 

  19. Swindle CS, et al. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J. Cell Biol. 2001, 154: 459–468.

    PubMed  CAS  Google Scholar 

  20. Herold-Mende C, Mueller MM, Bonsanto MM, Schmitt HP, Kunze S, Steiner H-H. Clinical impact and functional aspects of tenascin-C expression during glioma progression. Int. J. Cancer 2002, 98: 362–369.

    PubMed  CAS  Google Scholar 

  21. Schenk S, et al. Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J. Cell Biol. 2003, 161: 197–209.

    PubMed  CAS  Google Scholar 

  22. Alper O, DeSantis ML, Stromberg K, Hacker NF, Cho-Chung YS, Salomon DS. Antisense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells. Int. J. Cancer 2000, 88: 566–574.

    PubMed  CAS  Google Scholar 

  23. Yates C, Wells A, Turner T. Luteinizing hormone releasing hormone (LHRH) analog reverses the cell adhesion profile of DU-145 human prostate carcinoma. Br. J. Cancer 2005, 92: 366–375.

    PubMed  CAS  Google Scholar 

  24. Wong AST, Gumbiner BM. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J. Cell Biol. 2003, 161: 1191–1203.

    PubMed  CAS  Google Scholar 

  25. Comoglio PM, Trusolino L. Invasive growth: from development to metastasis. J. Clin. Invest. 2002, 109: 857–862.

    PubMed  CAS  Google Scholar 

  26. Friedl P, Zanker KS, Brocker E-B. Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions and integrin function. Microsc. Res.Tech. 1998, 43: 369–378.

    PubMed  CAS  Google Scholar 

  27. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 2003, 3: 362–374.

    PubMed  CAS  Google Scholar 

  28. Wolf K, et al. Compensation mechanism in tumor cell migration: mesenchymalamoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 2003, 160: 267–277.

    PubMed  CAS  Google Scholar 

  29. Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell 1996, 84: 359–369.

    PubMed  CAS  Google Scholar 

  30. Kundra V, Anand-Apte B, Feig LA, Zetter BR. The chemotactic response to PDGF-BB: evidence of a role for ras. J. Cell Biol. 1995, 130: 725–731.

    PubMed  CAS  Google Scholar 

  31. Chou J, Burke NA, Iwabu A, Watkins SC, Wells A. Directional motility induced by EGF requires cdc42. Exp. Cell Res. 2003, 287: 47–56.

    PubMed  CAS  Google Scholar 

  32. Shrivastava A, et al. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol. Cell 1997, 1: 25–34.

    PubMed  CAS  Google Scholar 

  33. Vogel W, Gish GD, Alves F, Pawson T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol. Cell 1997, 1: 13–23.

    PubMed  CAS  Google Scholar 

  34. Iozzo RV, Moscatello DK, McQuillan DJ, Eichstetter I (1999). Decorin is a biological ligand for the epidermal growth factor receptor. J. Biol. Chem. 274: 4489–4492.

    PubMed  CAS  Google Scholar 

  35. Tran KT, Griffith LG, Wells A (2004). Extracellular matrix signaling through growth factor receptors during wound healing. Wound Repair Regen. 12: 262–268.

    PubMed  Google Scholar 

  36. Rabinovitz I, Gipson IK, Mercurio AM (2001). Traction forces mediated by α6β4 integrin: implications for basement membrane organization and tumor invasion. Mol. Biol. Cell 12: 4030–4043.

    PubMed  CAS  Google Scholar 

  37. Trusolino L, Bertotti A, Comoglio PM (2001). A signaling adaptor function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell 107: 643–654.

    PubMed  CAS  Google Scholar 

  38. Pollard TD (2003). The cytoskeleton, cellular motility, and the reductionist agenda. Nature 422: 741–745.

    PubMed  CAS  Google Scholar 

  39. Hall A, ed. GTPases. 2000, Oxford University Press: Oxford.

    Google Scholar 

  40. Xie H, et al. (1998). EGF receptor regulation of cell motility: EGF induces disassembly of focal adhesions independently of the motility-associated PLCγ signaling pathway. J. Cell Sci. 111: 615–624.

    PubMed  CAS  Google Scholar 

  41. Comoglio PM, Boccaccio C (2001). Scatter factors and invasive growth. Semin. Cancer Biol. 11: 153–162.

    PubMed  CAS  Google Scholar 

  42. Conacci-Sorrrell M, Zhurinsky J, Ben-Ze’ev A (2002). The cadherin-catenin adhesion system in signaling and cancer. J. Clin. Invest. 109: 987–991.

    Google Scholar 

  43. Moriyama K, Yonezawa N, Sakai H, Yahara I, Nishida E (1992). Mutational analysis of an actin-binding site of cofilin and characterization of chimeric proteins between cofilin and destrin. J. Biol. Chem. 267: 7240–7244.

    PubMed  CAS  Google Scholar 

  44. Goldschmidt-Clermont PJ, Kim JW, Machesky LM, Rhee SG, Pollard TD (1991). Regulation of phospholipase C-γ1 by profilin and tyrosine phosphorylation. Science 251: 1231–1233.

    PubMed  CAS  Google Scholar 

  45. Chen P, Murphy-Ullrich J, Wells A (1996). A role for gelsolin in actuating EGF receptor-mediated cell motility. J. Cell Biol. 134: 689–698.

    PubMed  CAS  Google Scholar 

  46. Schafer DA, Jennings PB, Cooper JA (1996). Dynamics of capping protein and actin assembly in vitro: Uncapping barbed ends by polyphosphoinositides. J. Cell Biol. 135: 169–179.

    PubMed  CAS  Google Scholar 

  47. Condeelis J (2001). How is actin polymerization nucleated in vivo? Trends Cell Biol. 11: 288–293.

    PubMed  CAS  Google Scholar 

  48. Miyamoto S, et al. (1995). Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol. 131: 791–805.

    PubMed  CAS  Google Scholar 

  49. Zamir E, Katz BZ, Aota S, Yamada KM, Geiger B, Kam Z (1999). Molecular diversity of cell-matrix adhesions. J. Cell Sci. 112: 1655–1669.

    PubMed  CAS  Google Scholar 

  50. Gilmore AP, Burridge K (1996). Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphoshate. Nature 381: 531–535.

    PubMed  CAS  Google Scholar 

  51. Larsen M, Tremblay ML, Yamada KM (2003). Phosphatases in cell-matrix adhesion and migration. Nat. Rev. Mol. Cell Biol. 4: 700–711.

    PubMed  CAS  Google Scholar 

  52. Carragher NO, Frame MC (2004). Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. 14: 241–249.

    PubMed  CAS  Google Scholar 

  53. Wu C (1999). Integrin-linked kinase and PINCH: partners in regulation of cell-extracellular matrix interaction and signal transduction. J. Cell Sci. 112: 4485–4489.

    PubMed  CAS  Google Scholar 

  54. Bhatt A, Kaverina I, Otey C, Huttenlocher A (2002). Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain. J. Cell Sci. 115: 3415–3425.

    PubMed  CAS  Google Scholar 

  55. Robles E, Huttenlocher A, Gomez TM (2003). Filopodial calcium transients regulate growth cone motility and guidance through local activation of calpain. Neuron 38: 597–609.

    PubMed  CAS  Google Scholar 

  56. Carragher NO, Westhoff MA, Fincham VJ, Schaller MD, Frame MC (2003). A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src. Curr. Biol. 13: 1442–1450.

    PubMed  CAS  Google Scholar 

  57. Suetsugu S, Takenawa T (2003). Regulation of the cortical actin network in cell migration. Int. Rev. Cytol. 229: 245–286.

    PubMed  CAS  Google Scholar 

  58. Prehoda KE, Scott JA, Mullins RD, Lim WA (2000). Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290: 801–806.

    PubMed  CAS  Google Scholar 

  59. Loisel TP, Boujemaa R, Pantaloni D, Carlier M-F (1999). Reconstitution of actin-based motility of listeria and shigella using pure proteins. Nature 401: 613–616.

    PubMed  CAS  Google Scholar 

  60. Kempiak DJ, Yip SC, Backer JM, Segall JE (2003). Local signaling by the EGF receptor. J. Cell Biol. 162: 781–787.

    PubMed  CAS  Google Scholar 

  61. Hill K, et al. (2000). Specific requirement for the p85–p110α phosphatidylinositol 3-kinase during epidermal growth factor-stimulated actin nucleation in breast cancer cells. J. Biol. Chem. 275: 3741–3744.

    PubMed  CAS  Google Scholar 

  62. Gomez-Mouton C, et al. (2004). Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J. Cell Biol. 164: 759–768.

    PubMed  CAS  Google Scholar 

  63. Dormann D, Weijer G, Parent CA, Devreotes PN, Weijer CJ (2002). Visualizing PI3 kinase-mediated cell-cell signaling during Dictyostelium development. Curr. Biol. 12: 1178–1188.

    PubMed  CAS  Google Scholar 

  64. Iijima M, Huang YE, Luo HR, Vazquez F, Devreotes PN (2004). Novel mechanism of PTEN regulation by its phosphophatidylinositol (4,5)-binding motif is critical for chemotaxis. J. Biol. Chem. 279: 16606–16613.

    PubMed  CAS  Google Scholar 

  65. Lee J, Ishihara K, Jacobson K (1993). How do cells move along surfaces. Trends Cell Biol. 3: 366–370.

    PubMed  CAS  Google Scholar 

  66. Choma DP, Pumiglia K, DiPersio CM (2004). Integrin α3β1 directs the stabilization of a polarized lamellipodium in epithelial cells through activation of Rac1. J. Cell Sci. 117: 3947–3959.

    PubMed  CAS  Google Scholar 

  67. Brahmbhatt AA, Klemke RL (2003). ERK and RhoA differentially regulate pseudopodia growth and retraction during chemotaxis. J. Biol. Chem. 278: 13016–13025.

    PubMed  CAS  Google Scholar 

  68. Nobes CD, Hall A (1999). Rho GTPases control polarity, protrusion and adhesion during cell movement. J. Cell Biol. 144: 1235–1244.

    PubMed  CAS  Google Scholar 

  69. Dembo M, Oliver T, Ishihara A, Jacobson K (1996). Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys. J. 70: 2008–2022.

    PubMed  CAS  Google Scholar 

  70. Burton K, Park JH, Taylor DL (1999). Keratocytes generate traction forces in two phases. Mol. Biol. Cell 10: 3745–3769.

    PubMed  CAS  Google Scholar 

  71. Tan JL, Tien J, Pironte DM, Gray DS, Bhadriraju K, Chen CS (2003). Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA 100: 1484–1489.

    PubMed  CAS  Google Scholar 

  72. Cheng TP, Murakami N, Elzinga M (1992). Localization of myosin IIB at the leading edge of growth cones from rat dorsal root ganglionic cells. FEBS Letters 311: 91–94.

    PubMed  CAS  Google Scholar 

  73. Conrad AH, Jaffredo T, Conrad GW (1995). Differential localization of cytoplasmic myosin II isoforms A and B in avian interphase and dividing embryonic and immortalized cardiomyocytes and other cell types in vitro. Cell Mot. Cytoskeleton 31: 93–112.

    CAS  Google Scholar 

  74. Verkhovsky AB, Svitkina TM, Borisy GG (1995). Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles. J. Cell Biol. 131: 989–1002.

    PubMed  CAS  Google Scholar 

  75. Jay PY, Pham PA, Wong SA, Elson EL (1995). A mechanical function of myosin II in cell motility. J. Cell Sci. 108: 387–393.

    PubMed  CAS  Google Scholar 

  76. Saitoh T, et al. (2001). Differential localization of non-muscle myosin II isoforms and phosphorylated regulatory light chains in human MRC-5 fibroblasts. FEBS Letters 509: 365–369.

    PubMed  CAS  Google Scholar 

  77. Ben-Ya’acov A, Ravid S (2003). Epidermal grwoth factor-mediated transient phosphorylation and membrane localization of myosin IIB is required for efficient chemotaxis. J. Biol. Chem. 278: 40032–40040.

    PubMed  CAS  Google Scholar 

  78. Mitchison TJ, Cramer LP (1996). Actin-based cell motility and cell locomotion. Cell 84: 371–379.

    PubMed  CAS  Google Scholar 

  79. Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K (1999). Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400: 382–386.

    PubMed  CAS  Google Scholar 

  80. Klemke RL, Cai S, Giannini AL, Gallagher PJ, deLanerolle P, Cheresh DA (1997). Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol. 137: 481–492.

    PubMed  CAS  Google Scholar 

  81. Welsh JB, Gill GN, Rosenfeld MG, Wells A (1991). A negative feedback loop attenuates EGF-induced morphological changes. J. Cell Biol. 114: 533–543.

    PubMed  CAS  Google Scholar 

  82. Allen FD, Asnes CF, Chang P, Elson EL, Lauffenburger DA, Wells A (2002). EGF-induced matrix contraction is modulated by calpain. Wound Repair Regen. 10: 67–76.

    PubMed  Google Scholar 

  83. Iwabu A, Smith K, Allen FD, Lauffenburger DA, Wells A (2004). EGF induces fibroblast contractility and motility via a PKCδ-dependent pathway. J. Biol. Chem. 279: 14551–14560.

    PubMed  CAS  Google Scholar 

  84. Yoshioka K, Matsumura F, Akedo H, Itoh K (1998). Small GTP-binding protein rho stimulates the actomyosin system, leading to invasion of tumor cells. J. Biol. Chem. 273: 5146–5154.

    PubMed  CAS  Google Scholar 

  85. Sells MA, Boyd J, Chernoff J (1999). p21-activated kinase (Pak1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 145: 837–849.

    PubMed  CAS  Google Scholar 

  86. Komatsu S, Ikebe M (2004). ZIP kinase is responsible for the phosphorylation of myosin II and necessary for cell motility in mammalian fibroblasts. J. Cell Biol. 165: 243–254.

    PubMed  CAS  Google Scholar 

  87. Shiraha H, Glading A, Chou J, Jia Z, Wells A (2002). Activation of m-calpain (calpain II) by epidermal growth factor is limited by PKA phosphorylation of m-calpain. Mol. Cellular Biol. 22: 2716–2727.

    CAS  Google Scholar 

  88. Regen CM, Horwitz AF (1992). Dynamics of β1 integrin-mediated adhesive contacts in motile fibroblasts. J. Cell Biol. 119: 1347–1359.

    PubMed  CAS  Google Scholar 

  89. Friedl P, Maaser K, Klein CE, Niggemann B, Krohne G, Zanker KS (1997). Migration of highly aggressive MV3 melanoma cells in 3-D collagen lattices results in local matrix reorganization and shedding of α2 and β1 integrins and CD44. Cancer Res. 57: 2061–2070.

    PubMed  CAS  Google Scholar 

  90. Herman B, Pledger WJ (1985). Platelet-derived growth factor-induced alterations in vinculin and actin distribution in BALB/c-3T3 cells. J. Cell Biol. 100: 1031–1040.

    PubMed  CAS  Google Scholar 

  91. Angers-Loustau A, et al. (1999). Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration and cytokinesis in fibroblasts. J. Cell Biol. 144: 1019–1031.

    PubMed  CAS  Google Scholar 

  92. Huttenlocher A, et al. (1997). Regulation of cell migration by the calcium-dependent protease calpain. J. Biol. Chem. 272: 32719–32722.

    PubMed  CAS  Google Scholar 

  93. Glading A, Lauffenburger DA, Wells A (2002). Cutting to the chase: calpain proteases in cell migration. Trends Cell Biol. 12: 46–54.

    PubMed  CAS  Google Scholar 

  94. Palecek S, Huttenlocher A, Horwitz AF, Lauffenburger DA (1998). Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J. Cell Sci. 111: 929–940.

    PubMed  CAS  Google Scholar 

  95. Franco S, Perrin B, Huttenlocher A (2004). Isoform specific function of calpain 2 in regulating membrane protrusion. Exp. Cell Res. 299: 179–187.

    PubMed  CAS  Google Scholar 

  96. Glading A, et al. (2004). Epidermal growth factor activates m-calpain (calpain 2), at least in part, by ERK-mediated phosphorylation. Mol. Cellular Biol. 24: 2499–2512.

    CAS  Google Scholar 

  97. Tranqui L, Block MR (1995). Intracellular processing of talin occurs within focal adhesions. Exp. Cell Res. 217: 149–156.

    PubMed  CAS  Google Scholar 

  98. Carragher NO, Fincham VJ, Riley D, Frame MC (2001). Cleavage of focal adhesion kinase by different proteases during SRC-regulated transformation and apoptosis. Distinct roles for calpain and caspases. J. Biol. Chem. 276: 4270–4275.

    PubMed  CAS  Google Scholar 

  99. Bear JE, Loureiro JJ, Libova I, Fassler R, Wehland J, Gertler FB (2000). Negative regulation of fibroblast motility by ena/vasp proteins. Cell 101: 717–728.

    PubMed  CAS  Google Scholar 

  100. Kwiatkowski AV, Gertler FB, Loureiro JJ (2003). Function and regulation of Ena/VASP proteins. Trends Cell Biol. 13: 386–392.

    PubMed  CAS  Google Scholar 

  101. Glading A, Chang P, Lauffenburger DA, Wells A (2000). Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. J. Biol. Chem. 275: 2390–2398.

    PubMed  CAS  Google Scholar 

  102. Malliri A, et al. (1998). The transcriptional factor AP-1 is required for EGF-induced activation of rho-like GTPases, cytoskeletal rearrangements, motility, and in vitro invasion of A431 cells. J. Cell Biol. 143: 1087–1099.

    PubMed  CAS  Google Scholar 

  103. Tanimura S, Nomura K, Ozaki K, Tsujimoto M, Kondo T, Kohno M (2002). Prolonged nuclear retention of activated extracellular signal-regulated kinase 1/2 is required for hepatocyte growth factor-induced cell motility. J. Biol. Chem. 277: 28256–28264.

    PubMed  CAS  Google Scholar 

  104. Vial E, Sahai E, Marshall CJ (2003). Erk-MAPK signaling coordinately regulates activity of rac1 and rhoA for tumor cell motility. Cancer Cell 4: 67–79.

    PubMed  CAS  Google Scholar 

  105. Shestakova EA, Singer RH, Condeelis J (2001). The physiological significance of β-actin mRNA localization in determining cell polarity and directional motility. Proc. Natl. Acad. Sci. USA 98: 7045–7050.

    PubMed  CAS  Google Scholar 

  106. Devreotes PN, Zigmond SH (1988). Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Dev. Biol. 4: 649–686.

    CAS  Google Scholar 

  107. Nabi IR (1999). The polarization of the motile cell. J. Cell Sci. 112: 1803–1811.

    PubMed  CAS  Google Scholar 

  108. Xiao Z, Zhang N, Murphy DB, Devreotes PN (1997). Dynamic distribution of chemoattractant receptors in living cells during chemotaxis and persistent stimulation. J. Cell Biol. 139: 365–374.

    PubMed  CAS  Google Scholar 

  109. Foxman EF, Campbell JJ, Butcher EC (1997). Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139: 1349–1360.

    PubMed  CAS  Google Scholar 

  110. Narang A, Subramanian KK, Lauffenburger DA (2001). A mathematical model for chemoattractant gradient sensing based on receptor-regulated membrane phospholipid signaling dynamics. Ann. Biomed. Eng. 29: 677–691.

    PubMed  CAS  Google Scholar 

  111. Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR (2000). Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287: 1037–1040.

    PubMed  CAS  Google Scholar 

  112. Iijima I, Devreotes P (2002). Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109: 599–610.

    PubMed  CAS  Google Scholar 

  113. Condeelis JS, et al. (2001). Lamellipodia in invasion. Semin. Cancer Biol. 11: 119–128.

    PubMed  CAS  Google Scholar 

  114. Mouneimne G, et al. (2004). Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166: 697–708.

    PubMed  CAS  Google Scholar 

  115. Piccolo E, Innominato PF, Mariggio MA, Maffucci T, Iacobelli S, Falasca M (2002). The mechanism involved in the regulation of phospholipase Cγ1 activity in cell migration. Oncogene 21: 6520–6529.

    PubMed  CAS  Google Scholar 

  116. Chen P, Xie H, Sekar MC, Gupta KB, Wells A (1994). Epidermal growth factor receptor-mediated cell motility: phospholipase C activity is required, but MAP kinase activity is not sufficient for induced cell movement. J. Cell Biol. 127: 847–857.

    PubMed  CAS  Google Scholar 

  117. Haase I, Evans R, Pofahl R, Watt FM (2003). Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1-and EGF-dependent signalling pathways. J. Cell Sci. 116: 3227–3238.

    PubMed  CAS  Google Scholar 

  118. Chou J, Beer-Stolz D, Burke N, Watkins SC, Wells A (2002). Distribution of gelsolin and phosphoinositol 4,5-bisphosphate in lamellipodia during EGF-induced motility. Int. J. Biochem. Cell Biol. 34: 776–790.

    PubMed  CAS  Google Scholar 

  119. Satish L, Blair HC, Glading A, Wells A (2005). IP-9 (CXCL11) induced cell motility in keratinocytes requires calcium flux-dependent activation of β-calpain. Mol. Cellular Biol. 25: 1922–1941.

    CAS  Google Scholar 

  120. Allen WE, Zicha D, Ridley AJ, Jones GE (1998). A role for cdc42 in macrophage chemotaxis. J. Cell Biol. 141: 1147–1157.

    PubMed  CAS  Google Scholar 

  121. Ware MF, Wells A, Lauffenburger DA (1998). Epidermal growth factor alters fibroblast migration speed and directional persistence reciprocally and in matrix-dependent manner. J. Cell Sci. 111: 2423–2432.

    PubMed  CAS  Google Scholar 

  122. Maheshwari G, Wells A, Griffith LG, Lauffenburger DA (1999). Biophysical integration of effects of epidermal growth factor and fibronectin on fibroblast migration. Biophys. J. 76: 2814–2823.

    PubMed  CAS  Google Scholar 

  123. Gallio M, Englund C, Kylsten P, Samakovlis C (2004). Rhomboid 3 orchestrates slit-independent repulsion of tracheal branches at the CNS midline. Development 131: 3605–3614.

    PubMed  CAS  Google Scholar 

  124. Wells A, Lillien L (2004). Attraction or repulsion-a matter of individual tast. Science STKE pe47.

    Google Scholar 

  125. Wyckoff JB, Jones JG, Condeelis JS, Segall JE (2000). A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 60: 2504–2511.

    PubMed  CAS  Google Scholar 

  126. Segall JE, et al. (1996). EGF stimulates lamellipod extension in metastatic mammary adenocarcinoma cells by an actin-dependent mechanism. Clin. Exp. Metastasis 14: 61–72.

    PubMed  CAS  Google Scholar 

  127. Chen P, Gupta K, Wells A (1994). Cell movement elicited by epidermal growth factor receptor requires kinase and autophosphorylation but is separable from mitogenesis. J. Cell Biol. 124: 547–555.

    PubMed  CAS  Google Scholar 

  128. Rivat C, DeWever O, Bruynel E, Mareel M, Gespach C, Attoub S (2004). Disruption of STAT3 signaling leads to tumor cell invasion through alterations of homotypic cell-cell adhesion complexes. Oncogene 23: 3317–3327.

    PubMed  CAS  Google Scholar 

  129. Chang WS, Chen PM, Hsaio HL, Want HS, Liang WY, Su Y (2004). Overexpression of the thymosin beta-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene 23: 6666–6671.

    Google Scholar 

  130. Manos EJ, Kim M, Kassis J, Chang B, Wells A, Jones DA (2001). Prostin-1, a novel phospholipase C-γ regulated gene negatively associated with prostate tumor invasion. Oncogene 20: 2781–2790.

    PubMed  CAS  Google Scholar 

  131. Mamoune A, et al. (2004). DU145 human prostate carcinoma invasiveness is modulated by urokinase receptor (uPAR) downstream of epidermal growth factor receptor (EGFR) signaling. Exp. Cell Res. 299: 91–100.

    PubMed  CAS  Google Scholar 

  132. Blasi F, Carmeliet P (2002). uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 3: 932–943.

    PubMed  CAS  Google Scholar 

  133. Wang Y (2001). The role and regulation of urokinase-type plasminogen activator receptor gene expression in cancer invasion and metastasis. Med. Res. Rev. 21: 146–170.

    PubMed  Google Scholar 

  134. Bao L, Loda M, Stewart TR, Anand-Apte B, Zetter BR (1996). Thymosin β15: a novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nat. Med. 2: 1322–1328.

    PubMed  CAS  Google Scholar 

  135. Hurwitz H, et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Eng. J. Med. 350: 2335–2342.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Wells, A. (2006). Motility in Tumor Invasion and Metastasis — An Overview. In: Wells, A. (eds) Cell Motility in Cancer Invasion and Metastasis. Cancer Metastasis - Biology and Treatment, vol 8. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4009-1_1

Download citation

Publish with us

Policies and ethics