Skip to main content

Nanocomposite Thin Films With Improved Mechanical Properties

  • Conference paper
Functional Properties of Nanostructured Materials

Part of the book series: Nato Science Series ((NAII,volume 223))

Abstract

Nanoscaled/nanocomposite thin films with improved mechanical/tribological properties are presented. First some basic effects determining these properties in the case of nanophase materials (Hall-Petch effect, Griffith mechanisms, grain boundary sliding) are introduced. After presenting briefly a classification of nanoscaled thin films, emphasis is given to multilayer and nanocomposite films. For both classes, examples are given, and the underlaying mechanisms are discussed in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.W. Siegel, Nanophase Materials, in Encyclopedia of Applied Physics, edited by G.L. Trigg (VCH Publishers, 1994) vol. 11, p.173.

    Google Scholar 

  2. M. Stüber, H. Leiste, S. Ulrich, and A. Skodan, Z. Metallkd. 90, 774 (1999).

    Google Scholar 

  3. T. Zehnder and J. Patscheider, Surf. Coat. Technol. 133–134, 138 (2000).

    Article  Google Scholar 

  4. H. Holleck, H. Leiste, M. Stüber, and S. Ulrich, Z. Metallkd. 94, 621 (2003).

    Article  CAS  Google Scholar 

  5. W. Kulisch, Deposition of Superhard Diamond-Like Materials, Springer Tracts on Modern Physics (Heidelberg, 1999).

    Google Scholar 

  6. J.C. Anderson, K.D. Leaver, R.D. Rawlings, and J.M Alexander, Material Science (Chapman & Hall, London, 1990).

    Book  Google Scholar 

  7. G. Gottstein, Physikalische Grundlagen der Materialkunde (Springer, Berlin, 2001).

    Book  Google Scholar 

  8. S. Yip, Nature 391, 532 (1998).

    Article  ADS  CAS  Google Scholar 

  9. J. Schiøtz, F.D. Di Tolla, and K.W. Jacobsen, Nature 391, 561 (1998).

    Article  ADS  Google Scholar 

  10. H. van Swygenhofen and A. Caro, Appl. Phys. Lett 71, 1652 (1997).

    Article  ADS  Google Scholar 

  11. H. van Swygenhofen, A. Caro, and D. Farkas, Scripta Mater. 44, 1513 (2001).

    Article  Google Scholar 

  12. J.E. Carsley, J. Ning, W.W. Milligan, S.A. Hackney, and E.C. Aifantis, Scripta Mater. 5, 441 (1995).

    CAS  Google Scholar 

  13. S. Arzt, Acta Mater. 46, 5611 (1998).

    Article  CAS  Google Scholar 

  14. A. Matthews, A. Leyland, K. Holmberg, and H. Ronkainen, Surf. Coat.Technol 100/101, 1 (1998).

    Article  Google Scholar 

  15. U. Helmersson, S. Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Markert, and J.E. Greene, J. Appl. Phys. 62, 481(1987).

    Article  ADS  CAS  Google Scholar 

  16. P.B. Mirkarimi, L. Hultman, and S.A. Barnett, Appl. Phys. Lett. 57, 2654 (1990).

    Article  ADS  CAS  Google Scholar 

  17. M. Shinn and S.A. Barnett, Appl. Phys. Lett. 64, 61 (1994).

    Article  ADS  CAS  Google Scholar 

  18. S. Ulrich, C. Ziebert, M. Stüber, E. Nold, H. Holleck, M. Göken, E. Schweitzer, and P. Schlossmacher, Surf. Coat. Tech. 188–189, 331 (2004).

    Article  Google Scholar 

  19. U. Wiklund, P. Hedenquist, and S. Hogmark, Surf. Coat. Technol. 97, 773 (1997).

    Article  CAS  Google Scholar 

  20. K.K. Shih and D.B. Dove, Appl. Phys. Lett. 61, 654 (1992).

    Article  ADS  CAS  Google Scholar 

  21. L. Wei, F. Mei, N. Shao, M. Kong, G. Li, and J. Li, Appl. Phys. Lett. 86, 021919 (2005).

    Article  ADS  Google Scholar 

  22. M. Lattemann, S. Ulrich, H. Holleck, M. Stüber, and H. Leiste, Diamond Relat. Mater. 11, 1248 (2002).

    Article  ADS  CAS  Google Scholar 

  23. J. Xu, M. Kamiko, Y. Zhou, G. Lu, and R. Yamamoto, Appl. Phys. Lett. 81, 4139 (2002).

    Article  ADS  CAS  Google Scholar 

  24. D. Li, X.W. Lin, S.C. Cheng, C.P. Dravid, Y.W. Chung, M.S. Wong, and D.S. Sproul, Appl. Phys. Lett 68, 1211 (1996).

    Article  ADS  CAS  Google Scholar 

  25. R.C. Cammarata, T.E. Schlesinger, C. Kim, S.B. Quadri, and A.S. Edelstein, Appl. Phys. Lett. 56, 1862 (1990).

    Article  ADS  CAS  Google Scholar 

  26. C. Kim, S.B. Quadri, M.R. Scanlon, and R.C. Cammarata, Thin Solid Films 240, 52 (1994).

    Article  ADS  CAS  Google Scholar 

  27. M. Stoudt, R.C. Cammarata, and R.E. Ricker, Scripta Mater. 43, 491 (2000).

    Article  CAS  Google Scholar 

  28. S.L. Lehoczky, J. Appl. Phys. 49, 5479 (1978).

    Article  ADS  CAS  Google Scholar 

  29. H. Holleck, M. Lahres, and P.Woll, Surf. Coat. Technol. 41, 179 (1990).

    Article  CAS  Google Scholar 

  30. I. Barzen, M. Edinger, J. Scherer, S. Ulrich, K.Jung, and H. Ehrhardt, Surf. Coat. Technol. 60, 454 (1993).

    Article  CAS  Google Scholar 

  31. X. Chu and S.A. Barnett, J. Appl. Phys. 77, 4403 (1995).

    Article  ADS  CAS  Google Scholar 

  32. H. Holleck and V. Schier, Surf. Coat. Technol. 76–77, 328 (1995)

    Article  Google Scholar 

  33. S. Zhang, D. Sun, Y.Q. Fu, and H.J. Du, Surf. Coat. Technol.167, 113 (2003).

    Article  CAS  Google Scholar 

  34. A.A. Voevodin and J.S. Zabinski, J. Mater. Sci. 33, 319 (1998).

    Article  ADS  CAS  Google Scholar 

  35. S.Veprek, J. Vac. Sci. Technol. A 17, 2401 (1999).

    Article  ADS  CAS  Google Scholar 

  36. S. Veprek, S. Reiprich, and L. Shizhi, Appl. Phys. Lett. 66, 2640 (1995).

    Article  ADS  CAS  Google Scholar 

  37. P.Nesladek and S.Veprek, phys. stat. sol. (a) 177, 53 (2000).

    Article  ADS  Google Scholar 

  38. S. Veprek, Surf. Coat. Technol. 97, 15 (1997).

    Article  CAS  Google Scholar 

  39. J.S. Zabinski and A.A. Voevodin, J. Vac. Sci. Technol. A 16, 1890 (1998).

    Article  ADS  CAS  Google Scholar 

  40. A.A. Voevodin and J.S. Zabinski, Thin Solid Films 370, 223 (2000).

    Article  ADS  CAS  Google Scholar 

  41. S. Veprek, M. Hausmann, and S. Reiprich, J. Vac. Sci. Technol. A 14, 46 (1996).

    Article  ADS  CAS  Google Scholar 

  42. S. Veprek, P. Nesladek, A.Niederhofer, F. Glatz, M.Jilek, and M.Sima, Surf. Coat. Technol. 108–109, 138 (1998).

    Article  Google Scholar 

  43. A.A. Voevodin and J.S. Zabinski, Thin Solid Films 370, 223 (2000).

    Article  ADS  CAS  Google Scholar 

  44. A.A. Voevodin and J.S. Zabinski, Composite Sci. Technol. 65, 741 (2005).

    CAS  Google Scholar 

  45. C. Mitterer, P. Losbichler, F. Hofer, P. Warbichler, P.N. Gibson, and W. Gissler, Vacuum 50, 313 (1998).

    Article  ADS  CAS  Google Scholar 

  46. J. Musil and H. Hruby, Thin Solid Films 365, 104 (2000).

    Article  ADS  CAS  Google Scholar 

  47. A. Leyland and A. Matthew, Wear 246, 1 (2000).

    Article  CAS  Google Scholar 

  48. S.V. Prasad and J.S. Zabinski, Wear 203–204, 498 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Kulisch, W. (2006). Nanocomposite Thin Films With Improved Mechanical Properties. In: Kassing, R., Petkov, P., Kulisch, W., Popov, C. (eds) Functional Properties of Nanostructured Materials. Nato Science Series, vol 223. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4594-8_6

Download citation

Publish with us

Policies and ethics