Skip to main content

Limits in Water Relations

  • Chapter
Trees at their Upper Limit

Part of the book series: Plant Ecophysiology ((KLEC,volume 5))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfodillo T, Rento S, Carraro V, Furlanetto L, Urbinati C, Carrer M (1998) Tree water relations and climatic variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in j Larix decidua Miller, Picea abies (L.) Karst. and Pinus cembra L. Annals of Forest Science 55:159-172

    Google Scholar 

  • Anfodillo T, DiBisceglie DP, Urso T (2002) Minimum cuticular conductance and cuticle features of Picea abies and Pinus cembra needles along an altitudinal gradient in the Dolomites (NE Italian Alps). Tree Physiology 22:479-487

    PubMed  Google Scholar 

  • Aulitzky H (1961) Die Bodentemperaturen in der Kampfzone oberhalb der Waldgrenze und im subalpinen Zirben-Lärchenwald. Mitteilungen der Forstlichen Bundesversuchsanstalt Mariabrunn 59:153-208

    Google Scholar 

  • Badalotti A, Anfodillo T, Grace J (2000) Evidence of osmoregulation in Larix decidua at Alpine treeline and comparative responses to water availability of two co-occurring evergreen species. Annals of Forest Science 57:623-633

    Article  Google Scholar 

  • Baig MN, Tranquillini W (1976) Studies on upper timberline: morphology and anatomy of Norway spruce (Picea abies) and stone pine (Pinus cembra) needles from various habitat conditions. Canadian Journal of Botany 54:1622-1632

    Google Scholar 

  • Baig MN, Tranquillini W, Havranek WM (1974) Cuticuläre Transpiration von Picea abies und Pinus cembra- Zweigen auf verschiedener Seehöhe und ihre Bedeutung für die winterliche Austrocknung der Bäume an der alpinen Waldgrenze. Centralblatt für das Gesamte Forstwesen 4:195-211

    Google Scholar 

  • Bauer H, Nagele M, Comploj M, Galler V, Mair M, Unterpertinger E (1994) Photosynthesis in cold acclimated leaves of plants with various degrees of frost tolerance. Physiologia Plantarum 91:403-412

    Article  CAS  Google Scholar 

  • Benecke U, Schulze E-D, Matyssek R, Havranek WM (1981) Environmental control of CO2-assimilation and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50:54-61

    Article  Google Scholar 

  • Boyce RL, Lucero SA (1999) Role of roots in winter water relations of Engelmann spruce saplings. Tree Physiology 19:893-898

    PubMed  Google Scholar 

  • Boyce RL, Saunders GP (2000) Dependence of winter water relations of mature high-elevation Picea engelmannii and Abies lasiocarpa on summer climate. Tree Physiology 20:1077-1086

    PubMed  CAS  Google Scholar 

  • Christersson L (1972) The transpiration rate of unhardened, hardened and dehardened seedlings of spruce and pine. Physiologia Plantarum 26:258-263

    Google Scholar 

  • Christmann A, Havranek WM, Wieser G (1999) Seasonal variation of abscisic acid in needles of Pinus cembra L. at the alpine timberline and possible relations to frost resistance and water status. Phyton 39:23-30

    CAS  Google Scholar 

  • Cochard H, Froux F, Mayr S, Coutand C (2004) Xylem wall collapse in water-stressed pine needles. Plant Physiology 134:401-408

    Article  PubMed  CAS  Google Scholar 

  • Giger T, Leuschner C (2004) Altitudinal change in needle water relations of Pinus canariensis and possible evidence of a drought-induced alpine timberline on Mt. Teide, Tenerife. Flora 199:100-109

    Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2001) Effects of altitude on tracheid differentiation and lignification of Norway spruce. Canadian Journal of Botany 79:815-821

    Article  Google Scholar 

  • Goldstein GH, Brubaker LB, Hinckley TM (1985) Water relations of white spruce (Picea glauca (Moench) Voss) at tree line in north central Alaska. Canadian Journal of Forest Research 15:1080-1087

    Google Scholar 

  • Groß M, Rainer I, Tranquillini W (1991) Über die Frostresistenz der Fichte mit besonderer Berücksichtigung der Zahl der Gefrierzyklen und der Geschwindigkeit der Temperaturänderung beim Frieren und Auftauen. Forstwissenschaftliches Centralblatt 110:207-217

    Google Scholar 

  • Günthardt MS, Wanner H (1982) Veränderungen der Spaltöffnungen und der Wachsstruktur mit zunehmendem Nadelalter bei Pinus cembra L. und Picea abies (L.) Karsten an der Waldgrenze. Botanica Helvetica 92:47-60

    Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspectives in Plant Ecology, Evolution and Systematics 4:97-115

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Ewers BE, Ellsworth DS, Schäfer KVR, Oren R (2000) Influence of soil porosity on water use in Pinus taeda. Oecologia 124:495-505

    Article  Google Scholar 

  • Hadley JL, Smith WK (1983) Influence of wind exposure on needle desiccation and mortality for timberline conifers in Wyoming, U.S.A. Arctic and Alpine Research 15:127-135

    Article  Google Scholar 

  • Hadley JL, Smith WK (1986) Wind effects on needles of timberline conifers: seasonal influence on mortality. Ecology 67:12-19

    Article  Google Scholar 

  • Hadley JL, Smith WK (1989) Wind erosion of leaf surface wax in timberline conifers. Arctic and Alpine Research 21:392-398

    Article  Google Scholar 

  • Hadley JL, Smith WK (1990) Influence of leaf surface wax and leaf area to water content ratio on cuticular transpiration in western conifers USA. Canadian Journal of Forest Research 20:1306-1311

    Google Scholar 

  • Häsler R, Streule A, Turner H (1999) Shoot and root growth of young Larix decidua in contrasting microenvironments near the alpine treeline. Phyton 39:47-52

    Google Scholar 

  • Havranek WM (1972) Über die Bedeutung der Bodentemperatur für die Photosynthese und Transpiration junger Forstpflanzen und die Stoffproduktion an der Waldgrenze. Angewandte Botanik 46:101-116

    Google Scholar 

  • Holzer K (1959) Winterliche Schäden an Zirben nahe der alpinen Baumgrenze. Centralblatt für das Gesamte Forstwesen 76:232-244

    Google Scholar 

  • Katz C, Oren R, Schulze E-D, Milburn JA (1989) Uptake of water and solutes through twigs of Picea abies (L.) Karst. Trees 3:33-37

    Article  Google Scholar 

  • Kavanagh KL, Bond BJ, Aitken SN, Gartner BL, Knowe S (1999) Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiology 19:31-37

    PubMed  Google Scholar 

  • Körner Ch (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445-459.

    Article  Google Scholar 

  • Körner Ch (1999) Alpine plant life: functional plant ecology of high mountain ecosystems, 1st edn. Springer, Berlin, Heidelberg.

    Google Scholar 

  • Körner Ch, Cochrane PM (1985) Stomatal responses and water relations of Eucalyptus pauciflorain summer along an elevational gradient. Oecologia 66:443-455

    Article  Google Scholar 

  • Kuuluvainen T, Sprugel DG, Brooks JR (1996) Hydraulic architecture and structure of Abies lasiocarpa seedlings in three subalpine meadows of different moisture status a in the Eastern Olympic Mountains, Washington. Arctic and Alpine Research 28:60-64

    Article  Google Scholar 

  • Larcher W (1963) Zur spätwinterlichen Erschwerung der Wasserbilanz von Holzpflanzen an der Waldgrenze. Berichte des naturwissenschaftlich medizinischen Vereins Innsbruck 53:125-137

    Google Scholar 

  • Larcher W (1972) Der Wasserhaushalt immergrüner Pflanzen im Winter. Berichte der Deutschen Botanischen Gesellschaft 85:315-327

    Google Scholar 

  • Larcher W (1985) Winter stress in high mountains. In: Turner H, Tranquillini W (eds) Establishment and tending of subalpine forests: research and management. Eidgenössische Anstalt für das Forstliche Versuchswesen, Ber. 270, pp 11-20

    Google Scholar 

  • Li C, Liu S, Berninger F (2004) Picea seedlings show apparent acclimation to drought with increasing altitude in the eastern Himalaya. Trees 18:277-283

    Google Scholar 

  • Lindsay JH (1971) Annual cycle of leaf water potential in Picea engelmannii and Abies lasiocarpa at timberline in Wyoming. Arctic and Alpine Research 3:131-138

    Article  Google Scholar 

  • Martinez-Vilalta J, Sala A, Pinol J (2004) The hydraulic architecture of Pinaceae – a review. Plant Ecology 171:3-13

    Article  Google Scholar 

  • Mattes H (1982) Die Lebensgemeinschaft von Tannenhäher und Arve. Eidgenössische Anstalt für Forstliches Versuchswesen Birmensdorf 241:1-74

    Google Scholar 

  • Mayr S, Cochard H (2003) A new method for vulnerability analysis of small xylem areas reveals that compression wood of Norway spruce has lower hydraulic safety than opposite wood. Plant, Cell and Environment 26:1365-1371

    Article  Google Scholar 

  • Mayr S, Wolfschwenger M, Bauer H (2002) Winter-drought induced embolism in Norway spruce (Picea abies) at the alpine timberline. Physiologia Plantarum 115:74-80

    Article  PubMed  CAS  Google Scholar 

  • Mayr S, Gruber A, Bauer H (2003a) Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine). Planta 217:436-441

    Article  CAS  Google Scholar 

  • Mayr S, Gruber A, Schwienbacher F, Dämon B (2003b) Winter-embolism in a ‘‘Krummholz’’-Shrub (Pinus mugo) growing at the alpine timberline. Austrian Journal of Forest Science 120:29-38

    Google Scholar 

  • Mayr S, Rothart B, Dämon B (2003c) Hydraulic efficiency and safety of leader shoots and twigs of Norway spruce trees growing at the alpine timberline. Journal of Experimental Botany 54:2563-2568

    Article  CAS  Google Scholar 

  • Mayr S, Schwienbacher F, Bauer H (2003d) Winter at the alpine timberline: why does embolism occur in Norway spruce but not in stone pine ? Plant Physiology 131:780-792

    Article  CAS  Google Scholar 

  • Michaelis P (1934a) Ökologische Studien an der Baumgrenze, IV. Zur Kenntnis des winterlichen Wasserhaushaltes. Jahrbuch für wissenschaftliche Botanik 80:169-247

    Google Scholar 

  • Michaelis P (1934b) Ökologische Studien an der Baumgrenze, V. Osmotischer Wert und Wassergehalt während des Winters in den verschiedenen Höhenlagen. Jahrbuch für wissenschaftliche Botanik 80:337-362

    Google Scholar 

  • Platter W (1976) Wasserhaushalt, cuticuläres Transpirationsvermögen und Dicke der Cutinschichten einiger Nadelholzarten in verschiedenen Höhenlagen und nach experimenteller Verkürzung der Vegetationsperiode. Ph.D. thesis, Innsbruck University

    Google Scholar 

  • Richards JH, Bliss LC (1986) Winter water relations of a deciduous timberline conifer, Larix lyallii Parl. Oecologia 69:16-24

    Article  Google Scholar 

  • Smith WK, Young DR, Carter GA, Hadley JL, McNaughton GM (1984) Autumn stomatal closure in six conifer species of the Central Rocky Mountains. Oecologia 63:237-242

    Article  Google Scholar 

  • Sowell JB, Kouitnik DL Lansing AJ (1982) Cuticular transpiration of whitebark pine (Pinus albicaulis) within a Sierra Nevadan timberline ecotone, USA. Arctic and Alpine Research 14:97-103

    Article  Google Scholar 

  • Sparks JP, Black RA (1998) Winter hydraulic conductivity and xylem cavitation in coniferous trees from upper and lower treeline. Arctic, Antarctic, and Alpine Research 32:397-403

    Article  Google Scholar 

  • Sparks JP, Campbell GS, Black RA (2001) Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study. Oecologia 127:468-475

    Article  Google Scholar 

  • Sperry JS, Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous and conifer species. Plant Physiology 100:605-613

    Article  PubMed  Google Scholar 

  • Sperry JS, Nichols KL, Sullivan JEM, Eastlack SE (1994) Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75:1736-1752

    Article  Google Scholar 

  • Sperry JS, Ikeda T (1997) Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiology 17:275-280

    PubMed  Google Scholar 

  • Tranquillini W (1957) Standortsklima, Wasserbilanz und CO2-Gaswechsel junger Zirben (Pinus cembra L.) an der alpinen Waldgrenze. Planta 49:612-661

    Article  Google Scholar 

  • Tranquillini W (1973) Der Wasserhaushalt junger Forstpflanzen nach dem Versetzen und seine Beeinflussbarkeit. Centralblatt für das Gesamte Forstwesen 90:46-52

    Google Scholar 

  • Tranquillini W (1974) Der Einfluß von Seehöhe und Länge der Vegetationszeit auf das cuticuläre Transpirationsvermögen von Fichtensämlingen im Winter. Berichte der Deutschen Botanischen Gesellschaft 87:175-184

    Google Scholar 

  • Tranquillini W (1976) Water relations and alpine timberline. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Ecological Studies, vol 19. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special reference to the European Alps. Ecological Studies, vol 31. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Tranquillini W (1980) Winter desiccation as the cause for alpine timberline. NZFS FRI Technical Paper 70:263-267

    Google Scholar 

  • Tranquillini W (1982) Frost drought and its ecological significance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopaedia of plant physiology 12B, Physiological plant ecology II. Springer, Berlin, Heidelberg, New York, pp 379-400

    Google Scholar 

  • Tranquillini W, Platter W (1983) Der winterliche Wasserhaushalt der Lärche (Larix decidua Mill.) an der alpinen Waldgrenze. Verhandlungen Gesellschaft für Ökologie 9:433-443

    Google Scholar 

  • Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal 15:335-360

    Google Scholar 

  • Turner H (1961) Jahresgang und biologische Wirkung der Sonnen- und Himmelsstrahlung an der Waldgrenze der Ötztaler Alpen. Wetter und Leben 13:93-113

    Google Scholar 

  • Van Gradingen P, Grace J, Jeffree CE (1991) Abrasive damage by wind to the needle surface of Pinus sylvestris L. and Picea sitchensis (Bong.) Carr. Plant, Cell and Environment 14:185-193

    Article  Google Scholar 

  • Wardle P (1981) Winter desiccation of conifer needles simulated by artificial freezing. Arctic and Alpine Research 13:419-423

    Article  Google Scholar 

  • Wieser G (2000) Seasonal variation of leaf conductance in a subalpine Pinus cembra during the winter months. Phyton 40:185-190

    Google Scholar 

  • Wieser G (2002) Exchange of trace gases at the tree - atmosphere interface: ozone. In: Gasche R, Papen H, Rennenberg H (eds) Trace gas exchange in forest ecosystems. Tree Physiology, vol 3. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 211-226

    Google Scholar 

  • Zimmermann MH (1978) Hydraulic architecture of some diffuse-porous trees. Canadian Journal of Botany 56:2286-2295

    Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer Verlag, Berlin.

    Google Scholar 

  • Zweifel R, Häsler R (2000) Frost-induced reversible shrinkage of bark of mature subalpine conifers. Agricultural and Forest Meteorology 102:213-222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Mayr, S. (2007). Limits in Water Relations. In: Wieser, G., Tausz, M. (eds) Trees at their Upper Limit. Plant Ecophysiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5074-7_8

Download citation

Publish with us

Policies and ethics