Skip to main content

Use of Lipases in the Synthesis of Structured Lipids in Supercritical Carbon Dioxide

  • Chapter
Industrial Enzymes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaltonen, O. and M. Rantakyla (1991). Biocatalysis in supercritical CO2 . Trends Biotechnol. 21(4), 240–248.

    CAS  Google Scholar 

  • Aoki, K., K. Hiramatsu, M. Tanaka and S. Kaneshina (1968). Bovine serum albumin exposed to high pressure. Biochim. Biophys. Acta 160, 168–177.

    Google Scholar 

  • Arsan, J. and K.L. Parkin (2000). Selectivity of Rhizomucor miehei lipase as affected by choice of cosubstrate system in ester modification reactions in organic media. Biotech. Bioeng 69, 221–226.

    Article  Google Scholar 

  • Balcão, V.M., A.L. Paiva and F.X. Malcata (1996). Bioreactors with immobilized lipases: State of the art. Enzyme Microb. Technol. 18, 392–416.

    Article  PubMed  Google Scholar 

  • Barron, L., I. Hernandez, A. Bilbao, C.E. Flanagan, A.I. Najera, M. Virto, F.J. Perez-Elortondo, M. Albisu and M. de Renobales (2004). Changes in lipid fractions and sensory properties of Idiazabal cheese induced by lipase addition. Journal of Dairy Research 71, 372–379.

    Article  PubMed  CAS  Google Scholar 

  • Beermann, C., J. Jelinek, T. Reinecker, A. Hauenschild, G. Boehm and H.-U. Klör (2003). Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers. Lipids in Health and Desease 2, 1–10.

    Article  Google Scholar 

  • Bernard, P. and D. Barth (1995). Internal mass transfer limitation during enzymatic esterification in supercritical carbon dioxide and hexane. Biocatalysis and Biotransform 12, 299–308.

    Article  CAS  Google Scholar 

  • Bister, T. (2004). Transesterification in supercritical carbon dioxide. (Master Thesis). Department of Pure and Applied Biochemistry. Lund, Lund University, 35.

    Google Scholar 

  • Boel, E., B. Huge-Jensen, M. Christensen, L. Thim and N.P. Fiil (1988). Rhizopus Miehei triglyceride lipase is synthensized as a percursor. Lipids 23, 701–706.

    Article  PubMed  CAS  Google Scholar 

  • Bridgman, P.W. (1914). The coagulation of albumin by pressure. J. Biol. Chem. 19, 511–512.

    CAS  Google Scholar 

  • Brzozowski, A.M., U. Derewenda, Z.S. Derewenda, G.G. Dodson, D. M. Lawson, J.P. Turkenburg, F. Bjorkling, B. Huge-Jensen, S.A. PAtkar and L. Thim (1991). A model for interfacial activation in lipases from the structure of fungal lipase-inihibitior complex. Nature 351, 491–494.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Brzozowski, A.M., H. Savage, C.S. Verma, J.P. Turkenburg, D.M. Lawson, A. Svendsen and S. Patkar (2000). Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochem. 39, 15071–15082.

    Article  CAS  Google Scholar 

  • Chapus, C. and M. Semeriva (1976). Mechanism of pancreatic lipase action. 2. Catalytic properties of modified lipases. Biochem. 15, 4988–4991.

    Article  CAS  Google Scholar 

  • Chi, Y.M., K. Nakamura and T. Yano (1988). Enzymatic interesterification in supercritical carbon dioxide. Agric. Biol. Chem. 52(6), 1541–1550.

    CAS  Google Scholar 

  • Chrastil, J. (1982). Solubility of solids and liquids in supercritical gases. J. Phys. Chem. 86, 3016–3021.

    Article  CAS  Google Scholar 

  • Christie, W.W. (1986). The positional distributions of fatty acids in triglycerides. The Analysis of Oils and Fats. J.J. Hamilton and J.B. Rossel. London, Elsevier Appl. Sci., 313–339.

    Google Scholar 

  • Chryssomallis, G.S., P.M. Torgerson, H.G. Drickamer and G. Weber (1981). Effect of hydrostatic pressure on lysozyme and chymotrypsinogen detected by fluorescence polarization. Biochem. 20, 3955–3959.

    Article  CAS  Google Scholar 

  • Chulalaksananukul, W., J.S. Condoret and D. Combes (1992). Kinetics of geranyl acetate synthesis by lipase-catalyzed transesterification in n-hexane. Enzyme Microb. Technol. 14, 293–298.

    Article  CAS  Google Scholar 

  • Chulalaksananukul, W., J.S. Condoret, P. Delorme and R.M. Willemot (1990). Kinetic study of esterification by immobilized lipase in n-hexane. FEBS Lett. 276, 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Chulalaksananukul, W., J.-S. Conduret and D. Combes (1993). Geranyl acetate synthesis by lipase-catalyzed transesterification in supercritical carbon dioxide. Enzyme Microb. Technol. 15, 691–698.

    Article  CAS  Google Scholar 

  • Colombie, S., R.J. Tweddell, J.-S. Condoret and A. Marty (1998). Water activity control: a way to improve the efficiency of continuous lipase esterification. Biotech. Bioeng 60, 362–368.

    Article  CAS  Google Scholar 

  • Derewenda, U., L. Swenson, R. Green, Y. Wei, S. Yamaguchi, R. Joerger, M.J. Haas and Z.S. Derewenda (1994a). Current progress in crystallographic studies of new lipases from filamentous fungi. Protein. Eng. 7, 551–557.

    Article  CAS  Google Scholar 

  • Derewenda, U., L. Swenson, Y. Wei, R. Green, P.M. Kobos, R. Joerger, M.J. Haas and Z.S. Derewenda (1994b). Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. J. Lipid Res. 35, 524–534.

    CAS  Google Scholar 

  • DeSimone, G., L. Mandrich, V. Menchise, V. Giordano, F. Febbraio, M. Rossi, C. Pedone and G. Manco (2004a). A Substrate-induced Switch in the Reaction Mechanism of a Thermophilic Esterase: Kinetic evidences and structural basis. J. Biol. Chem. 279, 6815–6823.

    Article  CAS  Google Scholar 

  • DeSimone, G., V. Menchise, V. Alterio, L. Mandrich, M. Rossi, G. Manco and C. Pedone (2004b). The Crystal Structure of an EST2 Mutant Unveils Structural Insights on the H Group of the Carboxylesterase/Lipase Family. J. Biol. Chem. 343, 137–146.

    CAS  Google Scholar 

  • Dumont, T., D. Barth, C. Corbier, G. Branlant and M. Perrut (1992). Enzymatic reaction kinetic: comparison in organic solvent and in supercritical carbon dioxide. Biotech. Bioeng 39, 329–333.

    Article  Google Scholar 

  • Dumont, T., D. Barth and M. Perrut (1991). Continuous synthesis of ethyl misterate by enzymatic reaction in supercritical carbon dioxide. Proceeding of the 2nd International Symposium on Supercritical Fluids, Boston, USA.

    Google Scholar 

  • Erickson, J.C., P. Schyns and C.L. Cooney (1990). Effect of pressure on an enzymic reaction in a supercritical fluid. AIChE J. 36, 299–301.

    Article  CAS  Google Scholar 

  • Feuge, R.O. (1962). Lectures of the 1962 Short Course on Developments in Fat Chemistry; the Am. Oil Chemists’ Soc. J.W. Cowan (chairman). III. Derivatives of fats for use as foods. J. Am. Oil Chem. Soc. 39, 521–527.

    Article  CAS  Google Scholar 

  • Francisco, J. d. C. and E.S. Dey (2003a). Supercritical fluids as alternative, safe, food-processing media: an overview. Acta Microb. Polonica 52(Supl.): 35–43.

    Google Scholar 

  • Francisco, J. d. C., C. Turner, D. TopgÃ¥rd, B. Sivik and B. BergenstÃ¥hl (2003b). Liquid Crystalline Properties and Extractability of Monoolein-Water Systems by Supercritical Carbon Dioxide. Colloids and Surfaces A 213, 69–78.

    Article  Google Scholar 

  • Goh, S.H., S.K. Yeong and C.W. Wang (1993). Transesterification of cocoa butter by fungal lipases: effect of solvent on 1,3-specificity. J. Am. Oil Chem. Soc. 70, 567–570.

    Article  CAS  Google Scholar 

  • Gunnlaugsdottir, H. and B. Sivik (1995). Lipase-catalyzed alcoholysis of cod liver oil in supercritical carbon dioxide. J. Am. Oil Chem. Soc. 72, 399–405.

    Article  Google Scholar 

  • Gunnlaugsdottir, H. and B. Sivik (1997). Lipase-catalyzed alcoholysis with supercritical carbon dioxide extraction 1: Influence of flow rate. J. Am. Oil Chem. Soc. 74, 1483–1490.

    Article  CAS  Google Scholar 

  • Halling, P.J. (1990). Solvent selection for biocatalysis in mainly organic systems: predictions of effects on equilibrium position. Biotech. Bioeng 35, 691–701.

    Article  CAS  Google Scholar 

  • Halling, P.J. (1994). Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enzyme Microb. Technol. 43, 4.

    Google Scholar 

  • Hirata, H., K. Higuchi and T. Yamashina (1990). Lipase-catalyzed transesterification in organic solvent: effects of water and solvent, thermal stability and some applications. J. Biotechnol. 14, 157–167.

    Article  CAS  Google Scholar 

  • Holmquist, M. (2000). Alpha/beta-hydrolase fold enzymes: structures, functions and mechanisms. Current Protein Peptide Sci. 1, 209–235.

    Article  CAS  Google Scholar 

  • Janssen, A.E.M., A.M. Vaidya and P.J. Halling (1996). Substrate specificity and kinetics of candica rugosa lipase in organic media. Enzyme Microb. Technol. 18, 340–346.

    Article  PubMed  CAS  Google Scholar 

  • Kasche, V., R. Schlothauer and G. Brunner (1988). Enzyme denaturation in supercritical CO2 : Stabilizing effect of S-S bonds during the depressurization step. Biotechnol. Lett. 10, 569–574.

    Article  CAS  Google Scholar 

  • King, M.B., D.A. Alderson, F.H. Fallaha, D.M. Kassim, K.M. Kassim, J.R. Sheldon and R.S. Mahmud (1983). Some vapor/liquid and vapor/solid equilibrium measurements of relevance for supercritical extraction operations, and their correlation. Chemical Engineering at Supercritical Fluid Conditions. M.E. Paulaitis, J.M.L. Penninger, R.D. Gray, Jr. and P. Davidson. Ann Arbor, MI, Ann Arbor Science: 31–80.

    Google Scholar 

  • Klibanov, A.M. (1989). Enzymic catalysis in anhydrous organic solvents. Trends Biochem. Sci. 14, 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Knez, Z. and M. Habulin (1992). Lipase catalyzed esterification in supercritical carbon dioxide. Biocatalysis in Non-Concentional Media. J. Tramper, Elsevier Science Publishers: 401–407.

    Google Scholar 

  • Knez, Z. and M. Habulin (1994). Lipase catalysed esterification at high pressure. Biocatalysis 9, 115–121.

    Article  CAS  Google Scholar 

  • Knez, Z., V. Rizner, M. Habulin and D. Bauman (1995). Enzymatic synthesis of oleyl oleate in dense fluids. J. Am. Oil Chem. Soc. 72, 1345–1349.

    Article  CAS  Google Scholar 

  • Kornblatt, J.A., A.M. English and G.H.B. Hoa (1986). The effects of pressure on yeast cytochrome c peroxidase. Eur. J. Biochem 159, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Kornblatt, J.A. and G.H.B. Hoa (1982). Conformations of cytochrome oxidase: thermodynamic evaluation of the interconversion of the 418- and 428-nm forms. Biochem. 21, 5439–5444.

    Article  CAS  Google Scholar 

  • Macrae, A.R. (1985). Interesterification of fats and oils. Studies in Organic Chemistry (Amsterdam) 22(Biocatal. Org. Synth): 195–208.

    Google Scholar 

  • Malcata, F.X., H.R. Reyes, H.S. Garcia, C.G. Hill and C.H. Amundson (1990). Immobilized lipase reactors for modification of fats and oils - a review. J. Am. Oil Chem. Soc. 67, 890–910.

    Article  CAS  Google Scholar 

  • Martins, J.F., I.B. d. Carvalho, T.C. d. Sampaio and S. Barreiros (1994). Lipase-catayzed enantioselective esterification of glycidol in supercritical carbon dioxide. Enzyme Microb. Technol. 16, 785–790.

    Article  CAS  Google Scholar 

  • Marty, A., W. Chulalaksananukul, J.S. Condoret, R.M. Willemont and G. Durand (1990). Comparison of lipase-catalyzed esterification in supercritical carbon dioxide and n-hexane. Biotechnology Letters 12, 11–16.

    Article  CAS  Google Scholar 

  • Marty, A., W. Chulalaksamanukul, J.-S. Condoret and D. Combes (1992a). Transesterification and esterification in supercritical carbon dioxide. Colloque INSERN-High pressure and Biotechnology. C. Balny, R. Hayashi, K. Heremans and P. Masson. 224, 461–463.

    Google Scholar 

  • Marty, A., W. Chulalaksananukul, R.M. Willemot and J.S. Condoret (1992b). Kinetics of lipase-catalyzed esterification in supercritical CO2. Biotech. Bioeng 39, 273–280.

    Article  CAS  Google Scholar 

  • Marty, A., D. Combes and J.-S. Condoret (1994). Continuous reaction-separation process for enzymatic esterification in supercritical carbon dioxide. Biotech. Bioeng 43, 497–504.

    Article  CAS  Google Scholar 

  • Marty, A., V. Dossat and J.-S. Condoret (1997). Continuous operation of lipase-catalyzed reactions in nonaqueous solvents: influence of the production of hydrophilic compounds. Biotech. Bioeng 56, 232–237.

    Article  CAS  Google Scholar 

  • Mu, H. and T. Porsgaard (2005). The metabolism of structured triacylglycerols. Prog. Lipid Res. 44(6), 430–448.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, R.B. (1978). Anomalous stability of insulin at very high pressure. Experientia 34, 188–189.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, K. (1990). Biochemical reactions in supercritical fluids. Trends Biotechnol. 8(10), 288–292.

    Article  CAS  Google Scholar 

  • Nakamura, K. (1994). Biochemical reactions in supercritical fluids. Supercritical Fluid Processing of Food and Biomaterials. S.S.H. Rizvi. Glasgow, UK, Blakie: 54–61.

    Google Scholar 

  • Nakamura, K., Y.M. Chi, Y. Yamada and T. Yano (1985). Lipase activity and stability in supercritical carbon dioxide. Chem. Eng. Commun. 45(1–6), 207–212.

    Google Scholar 

  • Osborn, H.T. and C.C. Akoh (2002). Structured lipids-novel fats with medical, nutraceutical, and food applications. Comp. Rev. Food Sci. Food Safety 1, 93–103.

    Article  CAS  Google Scholar 

  • Parodi, P.W. (1982). Positional distribution of fatty acids in the triglyceride classes of milk fat. J. Dairy Res. 49(1), 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Randolph, T.W., H.W. Blanch, J.M. Praunitz and C.R. Wilke (1985). Enzymatic catalysis in a supercritical fluid. Biobetchnol. Lett. 7, 325–328.

    Article  CAS  Google Scholar 

  • Rousseau, D. and A.G. Marangoni (1998). Chemical interesterification of food lipids: theory and practice. Food Sci. Technol. (N.Y.) 88(Food Lipids: Chemistry, Nutrition and Biotechnology): 251–281.

    Google Scholar 

  • Rupley, J.A., E. Gratton and G. Careri (1983). Water and globular proteins. Trends Biochem. Sci. 8, 18–22.

    Article  CAS  Google Scholar 

  • Russell, A.J. and E.J. Beckman (1991). Enzymatic activity in supercritical fluids. Appl. Biochem. Biotechnol. 31, 197–211.

    Article  Google Scholar 

  • Saito, N., O. Sato, Y. Ikushima, K. Hatakeda and S. Ito (1994). Productivity of isopropyllideneglycerol acyl ester synthesis by enzymatic reaction in supercritical carbon dioxide. Third Int. Symp. Supercrit. Fluids, Strasburg, France.

    Google Scholar 

  • Shen, X.M., T.W. d. Loos and J. d. S. Arons (1992). Enzymatic reaction in organic solvents and supercritical gases. Biocatalysis in Non-Conventiional Media. J. Tramper, Elsevier Science Publishers: 417–423.

    Google Scholar 

  • Shinohara, H., A. Ogawa, M. Kassai and T. Aoyama (2005). Effect of Randomly Interesterified Triacylglycerols Containing Medium- and Long-Chain Fatty Acids on Energy Expenditure and Hepatic Fatty Acid Metabolism in Rats. Biosci. Biotech. Biochem. 69, 1811–1818.

    Article  CAS  Google Scholar 

  • Smith, R.E., J.W. Finley and G.A. Leveille (1994). Overview of SALATRIM: A family of low-calorie fats. J. Agric. Food Chem. 42, 432–434.

    Article  CAS  Google Scholar 

  • Snabe, T. (2004). Mechanisms of Triacylglycerol Film Lipolysis. Biostructure and Protein engineering. Ã…lborg, Ã…lborg University: 202.

    Google Scholar 

  • Sonntag, N.O.V. (1982). Glycerolysis of fats and methyl esters - status, review and critique. J. Am. Oil Chem. Soc. 59, 795A–802A.

    Article  CAS  Google Scholar 

  • Stahl, E., K.-W. Quirin and D. Gerard (1988). Dense Gases for Extraction and Refining. Berlin Heidlberg, Springer.

    Google Scholar 

  • Steytler, D.C., P.S. Moulson and J. Reynolds (1991). Biotransformations in near-critical carbon dioxide. Enzyme Microb. Technol. 13, 221–226.

    Article  CAS  Google Scholar 

  • Vaysse, L., A. Ly, G. Moulion and e. Dubreucq (2002). Chain-length selectivity of various lipases during hydrolysis, esterification and alcoholysis in biophasic aqueous medium. Enzyme Microb. Technol. 31, 648–655.

    Article  CAS  Google Scholar 

  • Weder, J.K.P. (1990). Influence of supercritical carbon dioxide on proteins and amno acids - an overview. The Cafe, Cacao 34, 87–96.

    CAS  Google Scholar 

  • Whitaker, J.R. (1994). Principles of Enzymology for the Food Sciences. New York, Dekker (New York, N.Y.).

    Google Scholar 

  • Wiebe, R. and V.L. Gaddy (1941). Vapor pressure composition of carbon dioxide-water mixtures at various temperatures and pressures to 700 atmospheres. J. Am. Chem. Soc. 63, 475–477.

    Article  CAS  Google Scholar 

  • Willis, W.M. and A.G. Marangoni (1998). Enzymatic interesterification. Food Sci. Technol. (N.Y.) 88(Food Lipids, Chemistry, Nutrition and Biotechnology): 665–698.

    Google Scholar 

  • Xuebing, X., C. Jacobsen, N.S. Nielsen, M.T. Heinrich and D. Zhou (2002). Purification and deodorization of structured lipids by short path distillation. Eur. J. Lipid Sci. Thechnol. 104, 745–755.

    Article  Google Scholar 

  • Yoon, S.-H., O. Miyawaki, K.-H. Park and K. Nakamura (1996). Transesterification between triolein and ethylbehenate by immobilized lipase in supercritical carbon dioxide. J. Fermentation Bioeng. 82, 334–340.

    Article  CAS  Google Scholar 

  • Yu, Z.-R., S.S.H. Rizvi and J.A. Zollweg (1992). Enzymatic Esterification of Fatty Acid Mixtures from Milk Fat and Anhydrous Milk Fat with Canola Oil in Supercritical Carbon Dioxide. Biotechnol. Prog. 8, 508–513.

    Article  CAS  Google Scholar 

  • Zaks, A. and A.M. Klibanov (1988). The effect of water on enzyme action in organic media. J. Biol. Chem. 263, 8017–8021.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

da Cruz Francisco, J., Gough, S.P., Dey, E.S. (2007). Use of Lipases in the Synthesis of Structured Lipids in Supercritical Carbon Dioxide. In: Polaina, J., MacCabe, A.P. (eds) Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_20

Download citation

Publish with us

Policies and ethics