Skip to main content

Amino Acid Dehydrogenases

  • Chapter
Industrial Enzymes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asano, Y., Nakazawa, A. and Endo, K. (1987a). Novel phenylalanine dehydrogenases from Sporosarcina ureae and Bacillus sphaericus. Purification and characterization. J. Biol. Chem. 262, 10346–10354.

    CAS  Google Scholar 

  • Asano, Y., Nakazawa, A., Endo, K., Hibino, Y., Ohmori, M., Numao, N. and Kondo, K. (1987b). Phenylalanine dehydrogenase of Bacillus badius. Purification, characterization and gene cloning. Eur. J. Biochem. 168, 153–159.

    CAS  Google Scholar 

  • Baker, P.J., Turnbull, A.P., Sedelnikova, S.E., Stillman, T.J. and Rice, D.W. (1995). A role for quaternary structure in the substrate specificity of leucine dehydrogenase. Structure. 3, 693–705.

    Article  PubMed  CAS  Google Scholar 

  • Baker, P.J., Waugh, M.L., Wang, X.G., Stillman, T.J., Turnbull, A.P., Engel, P.C. and Rice, D.W. (1997). Determinants of substrate specificity in the superfamily of amino acid dehydrogenases. Biochemistry 36, 16109–16115.

    Article  PubMed  CAS  Google Scholar 

  • Bhuiya, M.W., Sakuraba, H., Ohshima, T., Imagawa, T., Katunuma, N. and Tsuge, H. (2005). The first crystal structure of hyperthermostable NAD-dependent glutamate dehydrogenase from Pyrobaculum islandicum. 2005. J Mol Biol. 345, 325–337.

    Article  PubMed  CAS  Google Scholar 

  • Britton, K.L., Baker, P.J., Engel, P.C., Rice, D.W. and Stillman, T.J. (1993). Evolution of substrate diversity in the superfamily of amino acid dehydrogenases. Prospects for rational chiral synthesis. J. Mol. Biol. 234, 938–945.

    Article  PubMed  CAS  Google Scholar 

  • Britton, K.L., Stillman, T.J., Yip, K.S., Forterre, P., Engel, P.C. and Rice, D.W. (1998). Insights into the molecular basis of salt tolerance from the study of glutamate dehydrogenase from Halobacterium salinarum. J. Biol. Chem. 273, 9023–9030.

    Article  PubMed  CAS  Google Scholar 

  • Britton, K.L., Yip, K.S., Sedelnikova, S.E., Stillman, T.J., Adams, M.W., Ma, K., Maeder, D.L., Robb, F.T., Tolliday, N., Vetriani, C., Rice, D.W. and Baker, P.J. (1999). Structure determination of the glutamate dehydrogenase from the hyperthermophile Thermococcus litoralis and its comparison with that from Pyrococcus furiosus. J. Mol. Biol. 293, 1121–1132.

    Article  PubMed  CAS  Google Scholar 

  • Brunhuber, N.M. and Blanchard, J.S. (1994). The biochemistry and enzymology of amino acid dehydrogenases. Crit. Rev. Biochem. Mol. Biol. 29, 415–467.

    Article  PubMed  CAS  Google Scholar 

  • Brunhuber, N.M., Thoden, J.B., Blanchard, J.S. and Vanhooke, J.L. (2000). Rhodococcus L-phenylalanine dehydrogenase: kinetics, mechanism, and structural basis for catalytic specificity. Biochemistry. 39, 9174–9187.

    Article  PubMed  CAS  Google Scholar 

  • Busca, P., Paradisi, F., Moynihan, E., Maguirem, A.R. and Engel, P.C. (2004). Enantioselective synthesis of non-natural amino acids using phenylalanine dehydrogenases modified by site-directed mutagenesis. Org. Biomol. Chem. 2, 2684–2691.

    Article  PubMed  CAS  Google Scholar 

  • Dean, J.L., Wang, X.G., Teller, J.K., Waugh, M.L., Britton, K.L., Baker, P.J., Stillman, T.J., Martin, S.R., Rice, D.W. and Engel, P.C. (1994). The catalytic role of aspartate in the active site of glutamate dehydrogenase. Biochem. J. 301, 13–16.

    PubMed  CAS  Google Scholar 

  • Elcock, A.H. (1998). The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J. Mol. Biol. 284, 489–502.

    Article  PubMed  CAS  Google Scholar 

  • Galkin, A., Kulakova, L., Yoshimura, T., Soda, K. and Esaki, N. (1997). Synthesis of optically active amino acids from alpha-keto acids with Escherichia coli cells expressing heterologous genes. Appl. Environ. Microbiol. 63, 4651–4656.

    PubMed  CAS  Google Scholar 

  • Guthrie, R. and Susi, A. 1963. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 32, 338–343.

    PubMed  CAS  Google Scholar 

  • Hayden, B.M., Dean, J.L., Martin, S.R. and Engel, P.C. (1999). Chemical rescue of the catalytically disabled clostridial glutamate dehydrogenase mutant D165S by fluoride ion. Biochem. J. 340, 555–560.

    Article  PubMed  CAS  Google Scholar 

  • Huang, T., Warsinkem, A., Kuwana, T. and Scheller, F.W. (1998). Determination of L-phenylalanine based on an NADH-detecting biosensor. Anal. Chem. 70, 991–997.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, R.C. and Daniel, R.M. (1993) L-glutamate dehydrogenases: distribution, properties and mechanism. Comp. Biochem. Physiol. 106B, 767–792.

    CAS  Google Scholar 

  • Hummel, W., Schutte, H. and Kula, M.R. (1988). Enzymatic determination of L-phenylalanine and phenylpyruvate with L-phenylalanine dehydrogenase. Anal. Biochem. 170, 397–401.

    Article  PubMed  CAS  Google Scholar 

  • Hummel, W. and Kula, M.-R. (1989). Dehydrogenases for the synthesis of chiral compounds. Eur. J. Biochem. 184, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Hummel, W., Kuzu, M. and Geueke, B. (2003). An efficient and selective enzymatic oxidation system for the synthesis of enantiomerically pure D-tert-leucine. Org. Lett. 5, 3649–3650.

    Article  PubMed  CAS  Google Scholar 

  • Hyun, C.G., Kim, S.S., Park, K.H. and Suh, J.W. (2000). Valine dehydrogenase from Streptomyces albus: gene cloning, heterologous expression and identification of active site by site-directed mutagenesis. FEMS Microbiol. Lett. 182, 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Kataoka, K., Tanizawa, K., Fukui, T., Ueno, H., Yoshimura, T., Esaki, N. and Soda, K. (1994). Identification of active site lysyl residues of phenylalanine dehydrogenase by chemical modification with methyl acetyl phosphate combined with site-directed mutagenesis. J. Biochem. 116, 1370–1376.

    PubMed  CAS  Google Scholar 

  • Knapp, S., de Vos, W.M., Rice, D. and Ladenstein, R. (1997). Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 A resolution. J. Mol. Biol. 267, 916–932.

    Article  PubMed  CAS  Google Scholar 

  • Lebbink, J.H., Knapp, S., van der Oost, J., Rice, D., Ladenstein, R. and de Vos, W.M. (1998). Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. I. Introduction of a six-residue ion-pair network in the hinge region. J. Mol. Biol. 280, 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Lebbink, J.H., Knapp, S., van der Oost, J., Rice, D., Ladenstein, R. and de Vos, W.M. (1999). Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. II: construction of a 16-residue ion-pair network at the subunit interface. J. Mol. Biol. 289, 357–369.

    Article  PubMed  CAS  Google Scholar 

  • Leiser, A., Birch, A. and Robinson, J.A. (1996). Cloning, sequencing, overexpression in Escherichia coli, and inactivation of the valine dehydrogenase gene in the polyether antibiotic producer Streptomyces cinnamonensis. Gene 177, 217–222.

    Article  PubMed  CAS  Google Scholar 

  • Livesey, G. and Lund, P. (1988). Determination of branched-chain amino and keto acids with leucine dehydrogenase. Methods Enzymol. 166, 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Massey, L.K., Sokatch, J.R. and Conrad, R.S. (1976). Branched-chain amino acid catabolism in bacteria. Bacteriol. Rev. 40, 42–54.

    PubMed  CAS  Google Scholar 

  • Miñambres, B., Olivera, E.R., Jensen, R.A. and Luengo, J.M. (2000). A new class of glutamate dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus. J. Biol. Chem. 275, 39529–39542.

    Article  PubMed  Google Scholar 

  • Morishita, Y., Nakane, K., Fukatsu, T., Nakashima, N., Tsuji, K., Soya, Y., Yoneda, K., Asano, S. and Kawamura, Y. (1997). Kinetic assay of serum and urine for urea with use of urease and leucine dehydrogenase. Clin. Chem. 43, 1932–1936.

    PubMed  CAS  Google Scholar 

  • Naruse, H., Ohashi, Y.Y., Tsujii, A., Maeda, M., Nakamura, K., Fujii, T., Yamaguchi, A., Matsumoto, M. and Shibata, M. (1992). A method of PKU screening using phenylalanine dehydrogenase and microplate system. Screening 1, 63–66.

    Article  CAS  Google Scholar 

  • Ohshima, T., Nishida, N., Bakthavatsalam, S., Kataoka, K., Takada, H., Yoshimura, T., Esaki, N. and Soda K. (1994). The purification, characterization, cloning and sequencing of the gene for a halostable and thermostable leucine dehydrogenase from Thermoactinomyces intermedius. Eur. J. Biochem. 222, 305–312.

    Article  PubMed  CAS  Google Scholar 

  • Oikawa, T., Yamanaka, K., Kazuoka, T., Kanzawa, N. and Soda, K. (2001). Psychrophilic valine dehydrogenase of the antarctic psychrophile, Cytophaga sp. KUC-1: purification, molecular characterization and expression. Eur. J. Biochem. 268, 4375–4383.

    Article  PubMed  CAS  Google Scholar 

  • Patel, R.N. (2001). Enzymatic synthesis of chiral intermediates for Omapatrilat, an antihypertensive drug. Biomol. Eng. 17, 167–182.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, P.E. and Smith, T.J. (1999). The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery. Structure Fold. Des. 7, 769–782.

    Article  PubMed  CAS  Google Scholar 

  • Rice, D.W., Hornby, D.P. and Engel, P.C. (1985). Crystallization of an NAD+-dependent glutamate dehydrogenase from Clostridium symbiosum. J. Mol. Biol. 181, 147–149.

    Article  PubMed  CAS  Google Scholar 

  • Rife, J.E. and Cleland, W.W. (1980). Determination of the chemical mechanism of glutamate dehydrogenase from pH studies. Biochemistry 19, 2328–2333.

    Article  PubMed  CAS  Google Scholar 

  • Roch-Ramel, F. (1967). An enzymic and fluorophotometric method for estimating urea concentrations in nanoliter specimens. Anal. Biochem. 21, 372–381.

    Article  PubMed  CAS  Google Scholar 

  • Seah, S.Y.K., Britton, K.L., Baker, P.J., Rice, D.W., Asano, Y. and Engel, P.C. (1995). Alteration in relative activities of phenylalanine dehydrogenase towards different substrates by site-directed mutagenesis. FEBS Lett. 370, 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Seah, S.Y.K., Britton, K.L., Rice, D.W., Asano, Y. and Engel, P.C. (2002). Single amino acid substitution in Bacillus sphaericus phenylalanine dehydrogenase dramatically increases its discrimination between phenylalanine and tyrosine substrates. Biochemistry 41, 11390–11397.

    Article  PubMed  CAS  Google Scholar 

  • Seah, S.Y.K., Britton, K.L., Rice, D.W., Asano, Y. and Engel, P.C. (2003). Kinetic analysis of phenylalanine dehydrogenase mutants designed for aliphatic amino acid dehydrogenase activity with guidance from homology-based modelling. Eur. J. Biochem. 270, 4628–4634.

    Article  PubMed  CAS  Google Scholar 

  • Sekimoto, T., Matsuyama, T., Fukui, T. and Tanizawa, K. (1993). Evidence for lysine 80 as general base catalyst of leucine dehydrogenase. J. Biol. Chem. 268, 27039–27045.

    PubMed  CAS  Google Scholar 

  • Schütte, H., Hummel, W., Tsai, H. and Kula, M.R. (1985). L-leucine dehydrogenase from Bacillus cereus - production, large-scale purification and protein characterization. Appl. Microbiol. Biotechnol. 22, 306–317.

    Article  Google Scholar 

  • Smith, E.L., Austen, B.M., Blumenthal, K.M. and Nyc, J.F. (1975). In The Enzymes (Boyer, PD ed.) VolXI, pp. 293–367, Academic Press, New York.

    Google Scholar 

  • Smith, T.J., Schmidt, T., Fang, J., Wu, J., Siuzdak, G. and Stanley, C.A. (2002). The structure of apo human glutamate dehydrogenase details subunit communication and allostery. J. Mol. Biol. 318, 765–777.

    Article  PubMed  CAS  Google Scholar 

  • Stillman, T.J., Baker, P.J., Britton, K.L. and Rice, D.W. (1993). Conformational flexibility in glutamate dehydrogenase. Role of water in substrate recognition and catalysis. J. Mol. Biol. 234, 1131–1139.

    Article  PubMed  CAS  Google Scholar 

  • Syed, S.E.,-H. (1987). Beef liver glutamate dehydrogenase: studies of substrate specificity and relationship between the catalytic sites. Ph.D. Thesis. University of Sheffield, UK.

    Google Scholar 

  • Takada, H., Yoshimura, T., Ohshima, T., Esaki, N. and Soda, K. (1991). Thermostable phenylalanine dehydrogenase of Thermoactinomyces intermedius: cloning, expression, and sequencing of its gene. J. Biochem. 109, 371–376.

    PubMed  CAS  Google Scholar 

  • Tang, L., Zhang, Y.H. and Hutchinson, C.R. (1994). Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae. J. Bacteriol. 176, 6107–6119.

    PubMed  CAS  Google Scholar 

  • Turnbull, A.P., Baker, P.J. and Rice, D.W. (1997). Analysis of the quaternary structure, substrate specificity, and catalytic mechanism of valine dehydrogenase. J. Biol. Chem. 272, 25105–25111.

    Article  PubMed  CAS  Google Scholar 

  • Vancura, A., Vancurova, I., Volc, J., Fussey, S.P., Flieger, M., Neuzil, J., Marsalek, J. and Behal, V. (1988). Valine dehydrogenase from Streptomyces fradiae: purification and properties. J. Gen. Microbiol. 134, 3213–3219.

    PubMed  CAS  Google Scholar 

  • Vanhooke, J.L., Thoden, J.B., Brunhuber, N.M., Blanchard, J.S. and Holden, H.M. (1999). Phenylalanine dehydrogenase from Rhodococcus sp. M4: high-resolution X-ray analyses of inhibitory ternary complexes reveal key features in the oxidative deamination mechanism. Biochemistry. 38, 2326–2339.

    Article  PubMed  CAS  Google Scholar 

  • Vetriani, C., Maeder, D.L., Tolliday, N., Yip, K.S., Stillman, T.J., Britton, K.L., Rice, D.W., Klump, H.H. and Robb, F.T. (1998). Protein thermostability above 100 degrees C: a key role for ionic interactions. Proc. Natl. Acad. Sci. U.S.A. 95, 12300–12305.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Wang, X.G., Britton, K.L., Baker, P.J., Martin, S., Rice, D.W. and Engel, P.C. (1995). Alteration of the amino acid substrate specificity of clostridial glutamate dehydrogenase by site-directed mutagenesis of an active-site lysine residue. Protein Eng. 8, 147–152.

    Article  PubMed  CAS  Google Scholar 

  • Wendel, U., Gonzales, J. and Hummel, W. (1993). Neonatal screening for maple syrup urine disease by an enzyme-mediated colorimetric method. Clin. Chim. Acta. 219, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Werner, C., Stubbs, M.T., Krauth-Siegel, R.L. and Klebe, G. (2005). The crystal structure of Plasmodium falciparum glutamate dehydrogenase, a putative target for novel antimalarial drugs. J. Mol. Biol. 349, 597–607.

    Article  PubMed  CAS  Google Scholar 

  • Yip, K.S., Britton, K.L., Stillman, T.J., Lebbink, J., de Vos, W.M., Robb, F.T., Vetriani, C., Maeder, D. and Rice, D.W. (1998). Insights into the molecular basis of thermal stability from the analysis of ion-pair networks in the glutamate dehydrogenase family. Eur. J. Biochem. 255, 336–346.

    Article  PubMed  CAS  Google Scholar 

  • Yip, K.S., Stillman, T.J., Britton, K.L., Artymiuk, P.J., Baker, P.J., Sedelnikova, S.E., Engel, P.C., Pasquo, A., Chiaraluce, R. and Consalvi, V. (1995). The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure. 3, 1147–1158.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Seah, S.Y. (2007). Amino Acid Dehydrogenases. In: Polaina, J., MacCabe, A.P. (eds) Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_28

Download citation

Publish with us

Policies and ethics