Skip to main content

Elastic Field Equations

  • Chapter
Fracture Mechanics
  • 1431 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Dally and W.F. Riley, “Experimental Stress Analysis,” Third Edition, McGraw-Hill, Inc. New York, (1991)

    Google Scholar 

  2. R. Chona, “Non-singular stress effects in fracture test specimens: A Photoelastic study,” M.S. thesis, University of Maryland, College Park, (August 1985)

    Google Scholar 

  3. G.R. Irwin, Proc. SESA, Vol. XVI, No. 1 (1958) 93–96

    MathSciNet  Google Scholar 

  4. R.J. Sanford, “A critical re-examination of the Westergaard Method for Solving Opening-Mode Crack problems,” Mech. Res., Vol. 6, No. 5, (1979) 289–294

    MATH  Google Scholar 

  5. K. Hellan, “Introduction to Fracture Mechanics,” McGraw-Hill Book company, New York, (1984)

    Google Scholar 

  6. M.H. Aliabadi and D.P. Rooke, “Numerical Fracture Mechanics,” Computational Mechanics Publications, Kluwer Academic Publishers, Boston, (1992) Chapter 2.

    Google Scholar 

  7. M.L. Williams, “On The Stress Distribution At The Base Of A Stationary Crack,” J. Appl. Mech., 24 (1957) 109–114

    MATH  MathSciNet  Google Scholar 

  8. T.L. Becker Jr., R.M. Cannon and R.O. Ritchie, “Finite Crack Kinking and T-stresses in Functionally Graded Materials,” Inter. Journal of Solids and Structures, 38 (2001) 5545–5563

    Google Scholar 

  9. T. Fett, “Stress Intensity Factors and T-stress For Single and Double-Edge Cracked Circular Disks Under Mixed Boundary Conditions,” Eng. Fract. Mech., Vol. 69, No. 1, (2002) 69–83

    Google Scholar 

  10. T. Fett, D. Munz and G. Thun “Fracture Toughness Testing on Bars Under Opposite Cylinder Loading,” ASME, Inter. Gas Turbine and Institute, Turbo Expo IGTI, Vol. 4A, (2002) 97–102

    Google Scholar 

  11. T. Fett, “Stress Intensity Factors and T-stress For Internally Cracked Circular Disks Under Various Boundary Conditions,” Eng. Fract. Mech., Vol. 68, No. 9, (2001) 1119–1136

    Google Scholar 

  12. T. Fett, “A Compendium of T-stress Solutions,” Forschungszentrum Karlsruhe, Technik and Umwelt, Wissenschaftliche Berichte, FZKA 6057, www.ubka.uni-karlsruhe.deurl, (1998) 1–72

    Google Scholar 

  13. T. Fett, “Stress Intensity Factors and T-stress for Cracked Circular Disks,” Forschungszentrum Karlsruhe, Technik and Umwelt, Wissenschaftliche Berichte, FZKA 6484, www.ubka.uni-karlsruhe.de, (2000) 1–68

    Google Scholar 

  14. B. Chen, “The Effect of the T-stress on Crack Path Selection in Adhesively Bonded Joints,” Inter. Journal of Adhesion and Adhesives, Vol 21, No. 5, (2001) 357–368

    Google Scholar 

  15. N.P. O’Dowd and C.F. Shih, “Family of Crack-Tip Fields Characterized by a Triaxiality Parameter: I Structure of Fields,” J. Mechanics and Physics of Solids, Vol. 39, (1991) 989–1015

    Google Scholar 

  16. N.P. O’Dowd and C.F. Shih, “Family of Crack-Tip Fields Characterized by a Triaxiality Parameter: II Fracture Applications,” J, Mechanics and Physics of Solids, Vol. 40, (1992) 939–963

    Google Scholar 

  17. S.G. Larsson and A.J. Carlsson, “Influence of Non-Singular Stress Terms and Specimen Geometry on Small-Scale Yielding at Crack Tips in Elastic-Plastic Materials,” J. Mechanics and Physics of Solids, Vol. 21, (1973) 263–277

    Google Scholar 

  18. A.H. Sherry, C.C. France and L. Edwards, “Compendium of T-Stress Solutions for Two and Three Dimensional Cracked Geometries,” The Inter. Journal, Vol. 18, (1995) 141–155

    Google Scholar 

  19. A. Saxena, “Nonlinear Fracture Mechanics for Engineers,” CRC Press LLC, New York, (1998) 126–221

    Google Scholar 

  20. P.S. Leevers and J.C. Radon, “Inherent Biaxiality. in Various Fracture Specimen Geometries,” Inter. Journal, Vol. 19, (1982) 311–325

    Google Scholar 

  21. M.T. Kirk, R.H. Dodds Jr,. and T.L. Anderson, “An Application Technique for Predicting Size Effects on Cleavage Fracture Toughness (J c ) Using Elastic T-stress,” in Fracture Mechanics, Vol. 24, ASTM STP 1207, (1994) 62–86

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Elastic Field Equations. In: Fracture Mechanics. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7861-7_4

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7861-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7745-6

  • Online ISBN: 978-1-4020-7861-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics