Skip to main content

Challenges in Reliable Quantum Computing

  • Chapter
Nano, Quantum and Molecular Computing

Abstract

Quantum computing is a new and promising technology with the potential of exponentially powerful computation - if only a large-scale one can be built. There are several challenges in building a large-scale quantum computer - fabrication, verification, and architecture. The power of quantum computing comes from the ability to store a complex state in a single bit. This also what makes quantum systems difficult to build, verify, and design. Quantum states are fragile, so fabrication must be precise, and bits must often operate at very low temperatures. Unfortunately, the complete state may not be measured precisely, so verification is difficult. Imagine verifying an operation that is expected to not always get the same answer, but only an answer with a particular probability! Finally, errors occur much more often than with classical computing, making error correction the dominant task that quantum architectures need to perform well. We provide a basic tutorial of quantum computation for the system designer and examine the fundamental design and verification issues in constructing scalable quantum computers. We find the primary issues to be the verification of precise fabrication constraints, the design of quantum communication mechanisms, and the design of classical control circuitry for quantum operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leonard Adleman, Toward a mathematical theory of self-assembly, USC Tech Report, 2000.

    Google Scholar 

  2. D. Aharonov and M. Ben-Or, Fault tolerant computation with constant error, Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, 1997, pp. 176–188.

    Google Scholar 

  3. E.H. Anderson, V. Boegli, M.L. Schattenburg, D.P. Kern, and H.I. Smith, Metrology of electron beam lithography systems using holographically produced reference samples, J. Vac. Sci. Technol. B-9 (1991).

    Google Scholar 

  4. John S. Bell, On the Einstein-Podolsy-Rosen paradox, Physics 1 (1964), 195–200, Reprinted in J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  5. Charles H. Bennett and Gilles Brassard, Quantum cryptography: Public key distribution and coin tossing, Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, 1984, pp. 175–179.

    Google Scholar 

  6. A. M. Childs, E. Farhi, and J. Preskill, Robustness of adiabatic quantum computation, Phys. Rev. A (2002), no. 65.

    Google Scholar 

  7. Isaac L. Chuang, Quantum algorithm for clock synchronization, Phys. Rev. Lett. 85 (2000), 2006.

    Article  Google Scholar 

  8. D. Copsey, M. Oskin, F. Impens, T. Metodiev, A. Cross, F. Chong, I. Chuang, and J. Kubiatowicz, Toward a scalable, silicon-based quantum computing architecture, Journal of Selected Topics in Quantum Electronics, To appear.

    Google Scholar 

  9. David K. Ferry and Stephen M. Goodnick, Transport in nanostructures, Cambridge Studies in Semiconductor Physics & Microelectronic Engineering, 6, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  10. N. Gershenfeld and I.L. Chuang, Quantum computing with molecules, Scientific American (1998).

    Google Scholar 

  11. Al Globus, David Bailey, Jie Han, Richard Jaffe, Creon Levit, Ralph Merkle, and Deepak Srivastava, Nasa applications of molecular nanotechnology, Journal of the British Interplanetary Society 51 (1998).

    Google Scholar 

  12. L. Grover, Proc. 28th Annual ACM Symposium on the Theory of Computation (New York), ACM Press, 1996, pp. 212–219.

    Google Scholar 

  13. Sean Hallgren, Quantum Information Processing’ 02 Workshop (2002).

    Google Scholar 

  14. N. Isailovic, M. Whitney, D. Copsey, Y. Patel, F. Chong, I. Chuang, J. Kubiatowicz, and M. Oskin, Datapath and control for quantum wires, ACM Transactions on Architecture and Compiler Optimization, To appear.

    Google Scholar 

  15. R Jozsa, DS Abrams, JP Dowling, and CP Williams, Quantum atomic clock synchronization based on shared prior entanglement, Phys. Rev. Lett. (2000), 2010–2013.

    Google Scholar 

  16. B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J. Milburn, He Bi Sun, and Howard Wiseman, Single spin measurement using single electron transistors to probe two electron systems, arXive e-print cond-mat/9903371 (1999), Submitted to Phys. Rev. B.

    Google Scholar 

  17. Bruce Kane, A silicon-based nuclear spin quantum computer, Nature 393 (1998), 133–137.

    Article  Google Scholar 

  18. D. Kielpinsky, C. Monroe, and D.J. Wineland, Architecture for a large-scale ion trap quantum computer, Nature 417 (2002), 709.

    Google Scholar 

  19. E. Knill, R. Laflamme, R. Martinez, and C.-H. Tseng, A cat-state benchmark on a seven bit quantum computer, arXive e-print quant-ph/9908051 (1999).

    Google Scholar 

  20. Konstantin K. Likhareve, Single-eletron devices and their applications, Proceedings of the IEEE 87 (1999).

    Google Scholar 

  21. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, UK, 2000.

    Google Scholar 

  22. M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, England, 2000.

    Google Scholar 

  23. C.A. Sackett, D. Kielpinsky, B.E. King, C. Langer, V. Meyer, C.J. Myatt, M. Rowe, Q.A. Turchette, W.M. Itano, D.J. Wineland, and C. Monroe, Experimental entanglement of four particles, Nature 404 (2000), 256–258.

    Google Scholar 

  24. Michael Sanie, Michel Cote, Philppe Hurat, and Vinod Malhotra, Practical application of full-feature alternating phase-shifting technology for a phase-aware standard-cell design flow, (2001).

    Google Scholar 

  25. P. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, Proc. 35th Annual Symposium on Foundations of Computer Science (Los Alamitos, CA), IEEE Press, 1994, p. 124.

    Google Scholar 

  26. A. Skinner et al., Hydrogenic spin quantum computing in silicon: a digital approach, quant-ph/0206159 (2002).

    Google Scholar 

  27. A. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77 (1996).

    Google Scholar 

  28. J. R. Tucker and T.-C. Shen, Can single-electron integrated circuits and quantum computers be fabricated in silicon?, International Journal of Circuit Theory and Applications 28 (2000), 553–562.

    Article  Google Scholar 

  29. W. van Dam and G. Seroussi, Efficient quantum algorithms for estimating gauss sums, quant-ph (2002), 0207131.

    Google Scholar 

  30. Lieven M.K. Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S. Yannoni, Richard Cleve, and Isaac L. Chuang, Experimental realization of order-finding with a quantum computer, Phys. Rev. Lett. December 15 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Franklin, D., Chong, F.T. (2004). Challenges in Reliable Quantum Computing. In: Shukla, S.K., Bahar, R.I. (eds) Nano, Quantum and Molecular Computing. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8068-9_8

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8068-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8067-8

  • Online ISBN: 978-1-4020-8068-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics