Skip to main content

Molecular Events in Follicular Thyroid Tumors

  • Chapter
Molecular Basis of Thyroid Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 122))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Tischler, A.S. and R.A. DeLellis, Tumors of thyroid follicular epithelium: where have we been and where are we going? Endocr Pathol, 2002. 13(4): p. 267–9.

    Article  PubMed  Google Scholar 

  2. Baloch, Z.W. and V.A. Livolsi, Follicular-patterned lesions of the thyroid: the bane of the pathologist. Am J Clin Pathol, 2002. 117(1): p. 143–50.

    PubMed  Google Scholar 

  3. Saxen, E., et al., Observer variation in histologic classification of thyroid cancer. Acta Pathol Microbiol Scand [A], 1978. 86A(6): p. 483–6.

    CAS  Google Scholar 

  4. Hirokawa, M., et al., Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol, 2002. 26(11): p. 1508–14.

    Article  PubMed  Google Scholar 

  5. O’Sullivan, M.J., et al., Malignant peripheral nerve sheath tumors with t(X;18). A pathologic and molecular genetic study. Mod Pathol, 2000. 13(12): p. 1336–46.

    Google Scholar 

  6. Ladanyi, M., et al., Re: O’Sullivan MJ, Kyriakos M, Zhu X, Wick MR, Swanson PE, Dehner LP, Humphrey PA, Pfeifer JD: malignant peripheral nerve sheath tumors with t(X;18). A pathologic and molecular genetic study. Mod pathol 2000;13:1336–46. Mod Pathol, 2001. 14(7): p. 733–7.

    Google Scholar 

  7. Tamborini, E., et al., Lack of SYT-SSX fusion transcripts in malignant peripheral nerve sheath tumors on RT-PCR analysis of 34 archival cases. Lab Invest, 2002. 82(5): p. 609–18.

    Article  CAS  PubMed  Google Scholar 

  8. Fearon, E.R. and B. Vogelstein, A genetic model for colorectal tumorigenesis. Cell, 1990. 61(5): p. 759–67.

    Article  CAS  PubMed  Google Scholar 

  9. Hruban, R.H., R.E. Wilentz, and S.E. Kern, Genetic progression in the pancreatic ducts. Am J Pathol, 2000. 156(6): p. 1821–5.

    CAS  PubMed  Google Scholar 

  10. Jaffee, E.M., et al., Focus on pancreas cancer. Cancer Cell, 2002. 2(1): p. 25–8.

    Article  CAS  PubMed  Google Scholar 

  11. Fusco, A., et al., A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature, 1987. 328(6126): p. 170–2.

    Article  CAS  PubMed  Google Scholar 

  12. Kroll, T.G., et al., PAX8-PPARγ 1 fusion oncogene in human thyroid carcinoma [corrected]. Science, 2000. 289(5483): p. 1357–60.

    Article  CAS  PubMed  Google Scholar 

  13. Mitelman, F., Recurrent chromosome aberrations in cancer. Mutat Res, 2000. 462(2–3): p. 247–53.

    CAS  PubMed  Google Scholar 

  14. Grieco, M., et al., PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell, 1990. 60(4): p. 557–63.

    Article  CAS  PubMed  Google Scholar 

  15. Yip, L., et al., Multiple endocrine neoplasia type 2: evaluation of the genotype-phenotype relationship. Arch Surg, 2003. 138(4): p. 409–16; discussion 416.

    CAS  PubMed  Google Scholar 

  16. Thomas, G.A., et al., High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab, 1999. 84(11): p. 4232–8.

    Article  CAS  PubMed  Google Scholar 

  17. Basolo, F., et al., Potent Mitogenicity of the RET/PTC3 Oncogene Correlates with Its Prevalence in Tall-Cell Variant of Papillary Thyroid Carcinoma. Am J Pathol, 2002. 160(1): p. 247–54.

    CAS  PubMed  Google Scholar 

  18. Chiappetta, G., et al., The RET/PTC oncogene is frequently activated in oncocytic thyroid tumors (Hurthle cell adenomas and carcinomas), but not in oncocytic hyperplastic lesions. J Clin Endocrinol Metab, 2002. 87(1): p. 364–9.

    Article  CAS  PubMed  Google Scholar 

  19. Cheung, C.C., et al., Molecular basis off hurthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab, 2000. 85(2): p. 878–82.

    Article  CAS  PubMed  Google Scholar 

  20. Nikiforov, Y.E., et al., Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res, 1997. 57(9): p. 1690–4.

    CAS  PubMed  Google Scholar 

  21. Kroll, T.G., Molecular rearrangements and morphology in thyroid cancer. Am J Pathol, 2002. 160(6): p. 1941–4.

    CAS  PubMed  Google Scholar 

  22. Jenkins, R.B., et al., Frequent occurrence of cytogenetic abnormalities in sporadic nonmedullary thyroid carcinoma. Cancer, 1990. 66(6): p. 1213–20.

    CAS  PubMed  Google Scholar 

  23. Roque, L., et al., Deletion of 3p25->pter in a primary follicular thyroid carcinoma and its metastasis. Genes Chromosomes Cancer, 1993. 8(3): p. 199–203.

    CAS  PubMed  Google Scholar 

  24. Bondeson, L., et al., Chromosome studies in thyroid neoplasia. Cancer, 1989. 64(3): p. 680–5.

    CAS  PubMed  Google Scholar 

  25. Roque, L., et al., Cytogenetic findings in 18 follicular thyroid adenomas. Cancer Genet Cytogenet, 1993. 67(1): p. 1–6.

    Article  CAS  PubMed  Google Scholar 

  26. Teyssier, J.R., et al., Chromosomal changes in thyroid tumors. Relation with DNA content, karyotypic features, and clinical data. Cancer Genet Cytogenet, 1990. 50(2): p. 249–63.

    Article  CAS  PubMed  Google Scholar 

  27. Sozzi, G., et al., A t(2;3)(q12-13;p24-25) in follicular thyroid adenomas. Cancer Genet Cytogenet, 1992. 64(1): p. 38–41.

    Article  CAS  PubMed  Google Scholar 

  28. Lui, W.O., et al., Balanced translocation (3;7)(p25;q34): another mechanism of tumorigenesis in follicular thyroid carcinoma? Cancer Genet Cytogenet, 2000. 119(2): p. 109–12.

    Article  CAS  PubMed  Google Scholar 

  29. Storlazzi, C.T., et al., Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet, 2003. 12(18): p. 2349–58.

    Article  CAS  PubMed  Google Scholar 

  30. Lui, W, et al., unpublished data. 2004.

    Google Scholar 

  31. Dwight, T., et al., Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab, 2003. 88(9): p. 4440–5.

    Article  CAS  PubMed  Google Scholar 

  32. French, C., et al., Genetic and Biologic Subgroups of Early Stage Follicular Thyroid Cancer. Am J Pathol, in press, 2003.

    Google Scholar 

  33. Nikiforova, M., et al., Ras Point Mutations and PAX8-PPARg Rearrangement in Thyroid Tumors: Evidence for Distinct Molecular Pathways in Thyroid Follicular Carcinoma. J Clin Endocrinol Metab, in press, 2003.

    Google Scholar 

  34. Nikiforova, M.N., et al., PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol, 2002. 26(8): p. 1016–23.

    Article  PubMed  Google Scholar 

  35. Dwight, T, et al., Involvement of PAX8/PPARγ1 in Follicular Thyroid Tumors. JCEM, in press, 2003.

    Google Scholar 

  36. Marques, A.R., et al., Expression of PAX8-PPARgamma1 Rearrangements in Both Follicular Thyroid Carcinomas and Adenomas. J Clin Endocrinol Metab, 2002. 87(8): p. 3947–52.

    Article  CAS  PubMed  Google Scholar 

  37. Cheung, L., et al., Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab, 2003. 88(1): p. 354–7.

    Article  CAS  PubMed  Google Scholar 

  38. Aldred, M.A., et al., Peroxisome proliferator-activated receptor gamma is frequently downregulated in a diversity of sporadic nonmedullary thyroid carcinomas. Oncogene, 2003. 22(22): p. 3412–6.

    Article  CAS  PubMed  Google Scholar 

  39. Powell, J., et al., The PAX8-PPARg fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARg inhibition. Oncogene, 2003. in press.

    Google Scholar 

  40. Girnun, G.D., et al., APC-dependent suppression of colon carcinogenesis by PPARgamma. Proc Natl Acad Sci U S A, 2002. 99(21): p. 13771–6.

    Article  CAS  PubMed  Google Scholar 

  41. Sarraf, P., et al., Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med, 1998. 4(9): p. 1046–52.

    Article  CAS  PubMed  Google Scholar 

  42. Mueller, E., et al., Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell, 1998. 1(3): p. 465–70.

    Article  CAS  PubMed  Google Scholar 

  43. Mueller, E., et al., Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci USA, 2000. 97(20): p. 10990–5.

    CAS  PubMed  Google Scholar 

  44. Sarraf, P., et al., Loss-of-function mutations in PPAR gamma associated with human colon cancer. Mol Cell, 1999. 3(6): p. 799–804.

    Article  CAS  PubMed  Google Scholar 

  45. Martelli, M.L., et al., Inhibitory effects of peroxisome poliferator-activated receptor gamma on thyroid carcinoma cell growth. J Clin Endocrinol Metab, 2002. 87(10): p. 4728–35.

    Article  CAS  PubMed  Google Scholar 

  46. Ohta, K., et al., Ligands for peroxisome proliferator-activated receptor gamma inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J Clin Endocrinol Metab, 2001. 86(5): p. 2170–7.

    Article  CAS  PubMed  Google Scholar 

  47. Fajas, L., et al., PPARgamma controls cell proliferation and apoptosis in an RB-dependent manner. Oncogene, 2003. 22(27): p. 4186–93.

    Article  CAS  PubMed  Google Scholar 

  48. Fajas, L., et al., The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation. Dev Cell, 2002. 3(6): p. 903–10.

    Article  CAS  PubMed  Google Scholar 

  49. Galili, N., et al., Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet, 1993. 5(3): p. 230–5.

    Article  CAS  PubMed  Google Scholar 

  50. Barr, F.G., et al., Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet, 1993. 3(2): p. 113–7.

    Article  CAS  PubMed  Google Scholar 

  51. Shapiro, D.N., et al., Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res, 1993. 53(21): p. 5108–12.

    CAS  PubMed  Google Scholar 

  52. Mansouri, A., K. Chowdhury, and P. Gruss, Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet, 1998. 19(1): p. 87–90.

    CAS  PubMed  Google Scholar 

  53. Maulbecker, C.C. and P. Gruss, The oncogenic potential of Pax genes. Embo J, 1993. 12(6): p. 2361–7.

    CAS  PubMed  Google Scholar 

  54. French, C., et al., Thyroid cancer with PPARg rearrangement detected by flourescence in situ hybridization in fine needle aspiration biopsies. manuscript submitted, 2004.

    Google Scholar 

  55. Roque, L., et al., Karyotypic characterization of papillary thyroid carcinomas. Cancer, 2001. 92(10): p. 2529–38.

    Article  CAS  PubMed  Google Scholar 

  56. Kawai, K., et al., Tissue-specific carcinogenesis in transgenic mice expressing the RET proto-oncogene with a multiple endocrine neoplasia type 2A mutation. Cancer Res, 2000. 60(18): p. 5254–60.

    CAS  PubMed  Google Scholar 

  57. Michiels, F.M., et al., Development of medullary thyroid carcinoma in transgenic mice expressing the RET protooncogene altered by a multiple endocrine neoplasia type 2A mutation. Proc Natl Acad Sci U S A, 1997. 94(7): p. 3330–5.

    Article  CAS  PubMed  Google Scholar 

  58. Donis-Keller, H., et al., Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet, 1993. 2(7): p. 851–6.

    CAS  PubMed  Google Scholar 

  59. Mulligan, L.M., et al., Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature, 1993. 363(6428): p. 458–60.

    Article  CAS  PubMed  Google Scholar 

  60. Pierotti, M.A., et al., Characterization of an inversion on the long arm of chromosome 10juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proc Natl Acad Sci USA, 1992. 89(5): p. 1616–20.

    CAS  PubMed  Google Scholar 

  61. Bongarzone, I., et al., Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res, 1994. 54(11): p. 2979–85.

    CAS  PubMed  Google Scholar 

  62. Santoro, M., et al., Molecular characterization of RET/PTC3; a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene, 1994. 9(2): p. 509–16.

    CAS  PubMed  Google Scholar 

  63. Fugazzola, L., et al., Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res, 1995. 55(23): p. 5617–20.

    CAS  PubMed  Google Scholar 

  64. Ito, T., et al., Activated RET oncogene in thyroid cancers of children from areas contaminated by Chernobyl accident. Lancet, 1994. 344(8917): p. 259.

    CAS  PubMed  Google Scholar 

  65. Klugbauer, S., et al., High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident. Oncogene, 1995. 11(12): p. 2459–67.

    CAS  PubMed  Google Scholar 

  66. Santoro, M., et al., The TRK and RET tyrosine kinase oncogenes cooperate with ras in the neoplastic transformation of a rat thyroid epithelial cell line. Cell Growth Differ, 1993. 4(2): p. 77–84.

    CAS  PubMed  Google Scholar 

  67. Wang, J., et al., Conditional expression of RET/PTC induces a weak oncogenic drive in thyroid PCCL3 cells and inhibits thyrotropin action at multiple levels. Mol Endocrinol, 2003. 17(7): p. 1425–36.

    Article  CAS  PubMed  Google Scholar 

  68. De Vita, G., et al., Expression of the RET/PTC1 oncogene impairs the activity of TTF-1 and Pax-8 thyroid transcription factors. Cell Growth Differ, 1998. 9(1): p. 97–103.

    PubMed  Google Scholar 

  69. Knauf, J.A., et al., RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene, 2003. 22(28): p. 4406–12.

    Article  CAS  PubMed  Google Scholar 

  70. Kimura, E.T., et al., High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res, 2003. 63(7): p. 1454–7.

    CAS  PubMed  Google Scholar 

  71. Castellone, M.D., et al., Ras-mediated apoptosis of PC CL3 rat thyroid cells induced by RET/PTC oncogenes. Oncogene, 2003. 22(2): p. 246–55.

    Article  CAS  PubMed  Google Scholar 

  72. Tong, Q., S. Xing, and S.M. Jhiang, Leucine zipper-mediated dimerization is essential for the PTC1 oncogenic activity. J Biol Chem, 1997. 272(14): p. 9043–7.

    CAS  PubMed  Google Scholar 

  73. Monaco, C., et al., The RFG oligomerization domain mediates kinase activation and re-localization of the RET/PTC3 oncoprotein to the plasma membrane. Oncogene, 2001. 20(5): p. 599–608.

    Article  CAS  PubMed  Google Scholar 

  74. Pandey, A., et al.. The Ret receptor protein tyrosine kinase associates with the SH2-containing adapter protein Grb10. J Biol Chem, 1995. 270(37): p. 21461–3.

    CAS  PubMed  Google Scholar 

  75. Alberti, L., et al., Grb2 binding to the different isoforms of Ret tyrosine kinase. Oncogene, 1998. 17(9): p. 1079–87.

    Article  CAS  PubMed  Google Scholar 

  76. Arighi, E., et al., Identification of Shc docking site on Ret tyrosine kinase. Oncogene, 1997. 14(7): p. 773–82.

    Article  CAS  PubMed  Google Scholar 

  77. Melillo, R.M., et al., Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade. Mol Cell Biol, 2001. 21(13): p. 4177–87.

    Article  CAS  PubMed  Google Scholar 

  78. Durick, K., G.N. Gill, and S.S. Taylor, Shc and Enigma are both required for mitogenic signaling by Ret/ptc2. Mol Cell Biol, 1998. 18(4): p. 2298–308.

    CAS  PubMed  Google Scholar 

  79. Santoro, M., et al., Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene, 1996. 12(8): p. 1821–6.

    CAS  PubMed  Google Scholar 

  80. Powell, D.J., Jr., et al., The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res, 1998. 58(23): p. 5523–8.

    CAS  PubMed  Google Scholar 

  81. Jhiang, S.M., et al., Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology, 1996. 137(1): p. 375–8.

    Article  CAS  PubMed  Google Scholar 

  82. Cho, J.Y., et al., Early cellular abnormalities induced by RET/PTC1 oncogene in thyroid-targeted transgenic mice. Oncogene, 1999. 18(24): p. 3659–65.

    Article  CAS  PubMed  Google Scholar 

  83. PowellJr, D.J., et al., Altered gene expression in immunogenic poorly differentiated thyroid carcinomas from RET/PTC3p53-/-mice. Oncogene, 2001. 20(25): p. 3235–46.

    CAS  Google Scholar 

  84. Santoro, M., et al., Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest, 1992. 89(5): p. 1517–22.

    CAS  PubMed  Google Scholar 

  85. Bongarzone, I., et al., High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene, 1989. 4(12): p. 1457–62.

    CAS  PubMed  Google Scholar 

  86. Jhiang, S.M., et al., Detection of the PTC/retTPC oncogene in human thyroid cancers. Oncogene, 1992. 7(7): p. 1331–7.

    CAS  PubMed  Google Scholar 

  87. Sugg, S.L., et al., ret/PTC-1,-2, and-3 oncogene rearrangements in human thyroid carcinomas: implications for metastatic potential? J Clin Endocrinol Metab, 1996. 81(9): p. 3360–5.

    Article  CAS  PubMed  Google Scholar 

  88. Bounacer, A., et al., High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene, 1997. 15(11): p. 1263–73.

    Article  CAS  PubMed  Google Scholar 

  89. Tallini, G., et al., RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res, 1998. 4(2): p. 287–94.

    CAS  PubMed  Google Scholar 

  90. Nikiforova, M.N., et al., BRAF Mutations in Thyroid Tumors Are Restricted to Papillary Carcinomas and Anaplastic or Poorly Differentiated Carcinomas Arising from Papillary Carcinomas. J Clin Endocrinol Metab, 2003. 88(11): p. 5399–404.

    Article  CAS  PubMed  Google Scholar 

  91. Soares, P., et al., BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene, 2003. 22(29): p. 4578–80.

    Article  CAS  PubMed  Google Scholar 

  92. Viglietto, G., et al., RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene, 1995. 11(6): p. 1207–10.

    CAS  PubMed  Google Scholar 

  93. Sugg, S.L., et al., Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab, 1998. 83(11): p. 4116–22.

    Article  CAS  PubMed  Google Scholar 

  94. Corvi, R., et al., Frequent RET rearrangements in thyroid papillary microcarcinoma detected by interphase fluorescence in situ hybridization. Lab Invest, 2001. 81(12): p. 1639–45.

    CAS  PubMed  Google Scholar 

  95. Bongarzone, I., et al., Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J Clin Endocrinol Metab, 1996. 81(5): p. 2006–9.

    Article  CAS  PubMed  Google Scholar 

  96. Bongarzone, I., et al., RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin Cancer Res, 1998. 4(1): p. 223–8.

    CAS  PubMed  Google Scholar 

  97. Tallini, G. and S.L. Asa, RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol, 2001. 8(6): p. 345–54.

    CAS  PubMed  Google Scholar 

  98. Zhu, Z., et al., Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol, 2003. 120(1): p. 71–7.

    CAS  PubMed  Google Scholar 

  99. Santoro, M., et al., RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab, 2002. 87(1): p. 370–9.

    Article  CAS  PubMed  Google Scholar 

  100. Cheung, C.C., et al., Hyalinizing trabecular tumor of the thyroid: a variant of papillary carcinoma proved by molecular genetics. Am J Surg Pathol, 2000. 24(12): p. 1622–6.

    CAS  PubMed  Google Scholar 

  101. Papotti, M., et al., RET/PTC activation in hyalinizing trabecular tumors of the thyroid. Am J Surg Pathol, 2000. 24(12): p. 1615–21.

    CAS  PubMed  Google Scholar 

  102. Belchetz, G., et al., Hurthle cell tumors: using molecular techniques to define a novel classification system. Arch Otolaryngol Head Neck Surg, 2002. 128(3): p. 237–40.

    PubMed  Google Scholar 

  103. Alberti, L., et al., RET and NTRK1 proto-oncogenes in human diseases. J Cell Physiol, 2003. 195(2): p. 168–86.

    Article  CAS  PubMed  Google Scholar 

  104. Greco, A., et al., TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene, 1992. 7(2): p. 237–42.

    CAS  PubMed  Google Scholar 

  105. Butti, M.G., et al., A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics, 1995. 28(1): p. 15–24.

    Article  CAS  PubMed  Google Scholar 

  106. Greco, A., et al., Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer, 1997. 19(2): p. 112–23.

    Article  CAS  PubMed  Google Scholar 

  107. Musholt, T.J., et al., Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery, 2000. 128(6): p. 984–93.

    Article  CAS  PubMed  Google Scholar 

  108. Roccato, E., et al., Role of TFG sequences outside the coiled-coil domain in TRK-T3 oncogenic activation. Oncogene, 2003. 22(6): p. 807–18.

    Article  CAS  PubMed  Google Scholar 

  109. Roccato, E., et al., Biological activity of the thyroid TRK-T3 oncogene requires signalling through Shc. Br J Cancer, 2002. 87(6): p. 645–53.

    Article  CAS  PubMed  Google Scholar 

  110. Greco, A., et al., Role of the TFG N-terminus and coiled-coil domain in the transforming activity of the thyroid TRK-T3 oncogene. Oncogene, 1998. 16(6): p. 809–16.

    Article  CAS  PubMed  Google Scholar 

  111. Borrello, M.G., et al., The oncogenic versions of the Ret and Trk tyrosinc kinases bind Shc and Grb2 adaptor proteins. Oncogene, 1994. 9(6): p. 1661–8.

    CAS  PubMed  Google Scholar 

  112. Russell, J.P., et al., The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene, 2000. 19(50): p. 5729–35.

    Article  CAS  PubMed  Google Scholar 

  113. Bos, J.L., ras oncogenes in human cancer: a review. Cancer Res, 1989. 49(17): p. 4682–9.

    CAS  PubMed  Google Scholar 

  114. Wright, P.A., et al., Papillary and follicular thyroid carcinomas show a different pattern of ras oncogene mutation. Br J Cancer, 1989. 60(4): p. 576–7.

    CAS  PubMed  Google Scholar 

  115. Wright, P.A., et al., Radiation-associated and’ spontaneous’ human thyroid carcinomas show a different pattern of ras oncogene mutation. Oncogene, 1991. 6(3): p. 471–3.

    CAS  PubMed  Google Scholar 

  116. Shi, Y.F., et al., High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area. Cancer Res, 1991. 51(10): p. 2690–3.

    CAS  PubMed  Google Scholar 

  117. Lemoine, N.R., et al., Activated ras oncogenes in human thyroid cancers. Cancer Res, 1988. 48(16): p. 4459–63.

    CAS  PubMed  Google Scholar 

  118. Manenti, G., et al., Selective activation of ras oncogenes in follicular and undifferentiated thyroid carcinomas. Eur J Cancer, 1994. 7: p. 987–93.

    Google Scholar 

  119. Vasko, V., et al., Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab, 2003. 88(6): p. 2745–52.

    Article  CAS  PubMed  Google Scholar 

  120. Fukushima, T., et al., BRAF mutations in papillary carcinomas of the thyroid. Oncogene, 2003. 22(41): p. 6455–7.

    Article  CAS  PubMed  Google Scholar 

  121. Lemoine, N.R., et al., High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene, 1989. 4(2): p. 159–64.

    CAS  PubMed  Google Scholar 

  122. Namba, H., K. Matsuo, and J.A. Fagin, Clonal composition of benign and malignant human thyroid tumors. J Clin Invest, 1990. 86(1): p. 120–5.

    CAS  PubMed  Google Scholar 

  123. Fusco, A., et al., One-and two-step transformations of rat thyroid epithelial cells by retroviral oncogenes. Mol Cell Biol, 1987. 7(9): p. 3365–70.

    CAS  PubMed  Google Scholar 

  124. Gire, V., C.J. Marshall, and D. Wynford-Thomas, Activation of mitogen-activated protein kinase is necessary but not sufficient for proliferation of human thyroid epithelial cells induced by mutant Ras. Oncogene, 1999. 18(34): p. 4819–32.

    Article  CAS  PubMed  Google Scholar 

  125. Gire, V. and D. Wynford-Thomas, RAS oncogene activation induces proliferation in normal human thyroid epithelial cells without loss of differentiation. Oncogene, 2000. 19(6): p. 737–44.

    Article  CAS  PubMed  Google Scholar 

  126. Fagin, J.A., Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol Endocrinol, 2002. 16(5): p. 903–11.

    Article  CAS  PubMed  Google Scholar 

  127. Portella, G., et al., The Kirsten murine sarcoma virus induces rat thyroid carcinomas in vivo. Oncogene, 1989. 4(2): p. 181–8.

    CAS  PubMed  Google Scholar 

  128. Santelli, G., et al., Production of transgenic mice expressing the Ki-ras oncogene under the control of a thyroglobulin promoter. Cancer Res, 1993. 53(22): p. 5523–7.

    CAS  PubMed  Google Scholar 

  129. Oyama, T., et al., N-ras mutation of thyroid tumor with special reference to the follicular type. Pathol Int, 1995. 45(1): p. 45–50.

    CAS  PubMed  Google Scholar 

  130. Garcia-Rostan, G., et al., ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol, 2003. 21(17): p. 3226–35.

    Article  CAS  PubMed  Google Scholar 

  131. Aguirre, A.J., et al., Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev, 2003. 17(24): p. 3112–26.

    Article  CAS  PubMed  Google Scholar 

  132. Manenti, G., et al., Selective activation of ras oncogenes in follicular and undifferentiated thyroid carcinomas. Eur J Cancer, 1994. 30A(7): p. 987–93.

    CAS  PubMed  Google Scholar 

  133. Basolo, F., et al., N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid, 2000. 10(1): p. 19–23.

    CAS  PubMed  Google Scholar 

  134. Hara, H., et al., N-ras mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery, 1994. 116(6): p. 1010–6.

    CAS  PubMed  Google Scholar 

  135. Rochefort, P., et al., Thyroid pathologies in transgenic mice expressing a human activated Ras gene driven by a thyroglobulin promoter. Oncogene, 1996. 12(1): p. 111–8.

    CAS  PubMed  Google Scholar 

  136. Chin, L., et al., Essential role for oncogenic Ras in tumour maintenance. Nature, 1999. 400(6743): p. 468–72.

    Article  CAS  PubMed  Google Scholar 

  137. Davies, H., et al.. Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949–54.

    Article  CAS  PubMed  Google Scholar 

  138. Namba, H., et al., Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab, 2003. 88(9): p. 4393–7.

    Article  CAS  PubMed  Google Scholar 

  139. Cohen, Y., et al., BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst, 2003. 95(8): p. 625–7.

    CAS  PubMed  Google Scholar 

  140. Xu, X., et al., High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res, 2003. 63(15): p. 4561–7.

    CAS  PubMed  Google Scholar 

  141. Roger, P., et al., Mitogenic effects of thyrotropin and adenosine 3’, 5’-monophosphate in differentiated normal human thyroid cells in vitro. J Clin Endocrinol Metab, 1988. 66(6): p. 1158–65.

    CAS  PubMed  Google Scholar 

  142. Corvilain, B., et al., Role of the cyclic adenosine 3’, 5’-monophosphate and the phosphatidylinositol-Ca2+ cascades in mediating the effects of thyrotropin and iodide on hormone synthesis and secretion in human thyroid slices. J Clin Endocrinol Metab, 1994. 79(1): p. 152–9.

    Article  CAS  PubMed  Google Scholar 

  143. Nguyen, L.Q.,et al., A dominant negative CREB (cAMP response element-binding protein) isoform inhibits thyrocyte growth, thyroid-specific gene expression, differentiation, and function. Mol Endocrinol, 2000. 14(9): p. 1448–61.

    Article  CAS  PubMed  Google Scholar 

  144. Trulzsch, B., et al., Detection of thyroid-stimulating hormone receptor and Gsalpha mutations: in 75 toxic thyroid nodules by denaturing gradient gel electrophoresis. J Mol Med, 2001. 78(12): p. 684–91.

    CAS  PubMed  Google Scholar 

  145. Parma, J., et al., Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 1993. 365(6447): p. 649–51.

    Article  CAS  PubMed  Google Scholar 

  146. Russo, D., et al., Thyrotropin receptor gene alterations in thyroid hyperfunctioning adenomas. J Clin Endocrinol Metab, 1996. 81(4): p. 1548–51.

    Article  CAS  PubMed  Google Scholar 

  147. Lyons, J., et al., Two G protein oncogenes in human endocrine tumors. Science, 1990. 249(4969): p. 655–9.

    CAS  PubMed  Google Scholar 

  148. Krohn, K. and R. Paschke, Clinical review 133: Progress in understanding the etiology of thyroid autonomy. J Clin Endocrinol Metab, 2001. 86(7): p. 3336–45.

    Article  CAS  PubMed  Google Scholar 

  149. Michiels, F.M., et al., Oncogenic potential of guanine nucleotide stimulatory factor alpha subunit in thyroid glands of transgenic mice. Proc Natl Acad Sci USA, 1994. 91(22): p. 10488–92.

    CAS  PubMed  Google Scholar 

  150. Zeiger, M.A., et al., Thyroid-specific expression of cholera toxin A1 subunit causes thyroid hyperplasia and hyperthyroidism in transgenic mice. Endocrinology, 1997. 138(8): p. 3133–40.

    Article  CAS  PubMed  Google Scholar 

  151. Duprez, L., et al., Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nat Genet, 1994. 7(3): p. 396–401.

    Article  CAS  PubMed  Google Scholar 

  152. Weinstein, L.S., et al., Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med, 1991. 325(24): p. 1688–95.

    CAS  PubMed  Google Scholar 

  153. Suzuki, H., M.C. Willingham, and S.Y. Cheng, Mice with a mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. Thyroid, 2002. 12(11): p. 963–9.

    Article  CAS  PubMed  Google Scholar 

  154. Ying, H., et al., Mutant thyroid hormone receptor beta represses the expression and transcriptional activity of peroxisome proliferator-activated receptor gamma during thyroid carcinogenesis. Cancer Res, 2003. 63(17): p. 5274–80.

    CAS  PubMed  Google Scholar 

  155. Morin, P.J., et al., Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 1997. 275(5307): p. 1787–90.

    Article  CAS  PubMed  Google Scholar 

  156. Garcia-Rostan, G., et al., Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res, 1999. 59(8): p. 1811–5.

    CAS  PubMed  Google Scholar 

  157. Garcia-Rostan, G., et al., Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol, 2001. 158(3): p. 987–96.

    CAS  PubMed  Google Scholar 

  158. Cerrato, A., et al., Beta-and gamma-catenin expression in thyroid carcinomas. J Pathol, 1998. 185(3): p. 267–72.

    Article  CAS  PubMed  Google Scholar 

  159. Ishigaki, K., et al., Aberrant localization of beta-catenin correlates with overexpression of its target gene in human papillary thyroid cancer. J Clin Endocrinol Metab, 2002. 87(7): p. 3433–40.

    Article  CAS  PubMed  Google Scholar 

  160. Bohm, J., et al.. Expression and prognostic value of alpha-, beta-, and gamma-catenins indifferentiated thyroid carcinoma. J Clin Endocrinol Metab, 2000. 85(12): p. 4806–11.

    Article  CAS  PubMed  Google Scholar 

  161. Sozzi, G., et al., Cytogenetic and molecular genetic characterization of papillary thyroid carcinomas. Genes Chromosomes Cancer, 1992. 5(3): p. 212–8.

    CAS  PubMed  Google Scholar 

  162. Sapi, Z., et al., Contribution of p53 gene alterations to development of metastatic forms of follicular thyroid carcinoma. Diagn Mol Pathol, 1995. 4(4): p. 256–60.

    CAS  PubMed  Google Scholar 

  163. Donghi, R., et al., Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest, 1993. 91(4): p. 1753–60.

    CAS  PubMed  Google Scholar 

  164. Fagin, J.A., et al., High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest, 1993. 91(1): p. 179–84.

    CAS  PubMed  Google Scholar 

  165. Battista, S., et al., A mutated p53 gene alters thyroid cell differentiation. Oncogene, 1995. 11(10): p. 2029–37.

    CAS  PubMed  Google Scholar 

  166. Fagin, J.A., et al., Reexpression of thyroid peroxidase in a derivative of an undifferentiated thyroid carcinoma cell line by introduction of wild-type p53. Cancer Res, 1996. 56(4): p. 765–71.

    CAS  PubMed  Google Scholar 

  167. La Perle, K.M., S.M. Jhiang, and C.C. Capen, Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas. Am J Pathol, 2000. 157(2): p. 671–7.

    PubMed  Google Scholar 

  168. Lazzereschi, D., et al., Microsatellite instability in thyroid tumours and tumour-like lesions. Br J Cancer, 1999. 79(2): p. 340–5.

    CAS  PubMed  Google Scholar 

  169. Rodrigues-Serpa, A., A. Catarino, and J. Soares, Loss of heterozygosity in follicular and papillary thyroid carcinomas. Cancer Genet Cytogenet, 2003. 141(1): p. 26–31.

    Article  CAS  PubMed  Google Scholar 

  170. Soares, P., et al., Benign and malignant thyroid lesions show instability at microsatellite loci. Eur J Cancer, 1997. 33(2): p. 293–6.

    Article  CAS  PubMed  Google Scholar 

  171. Bauer, A.J., et al., Evaluation of adult papillary thyroid carcinomas by comparative genomic hybridization and microsatellite instability analysis. Cancer Genet Cytogenet, 2002. 135(2): p. 182–6.

    Article  CAS  PubMed  Google Scholar 

  172. Vermiglio, F,et al., Absence of microsatellite instability in thyroid carcinomas. Eur J Cancer, 1995. 31A(1): p. 128.

    CAS  PubMed  Google Scholar 

  173. Nikiforov, Y.E., M. Nikiforova, and J.A. Fagin, Prevalence of minisatellite and microsatellite instability in radiation-induced post-Chernobyl pediatric thyroid carcinomas. Oncogene, 1998. 17(15): p. 1983–8.

    Article  CAS  PubMed  Google Scholar 

  174. Segev, D.L., et al., Polymerase chain reaction-based microsatellite polymorphism analysis of follicular and Hurthle cell neoplasms of the thyroid. J Clin Endocrinol Metab, 1998. 83(6): p. 2036–42.

    Article  CAS  PubMed  Google Scholar 

  175. Belge, G., et al., Cytogenetic investigations of 340 thyroid hyperplasias and adenomas revealing correlations between cytogenetic findings and histology. Cancer Genet Cytogenet, 1998. 101(1): p. 42–8.

    Article  CAS  PubMed  Google Scholar 

  176. Roque, L., et al., Significance of trisomy 7 and 12 in thyroid lesions with follicular differentiation: a cytogenetic and in situ hybridization study. Lab Invest, 1999. 79(4): p. 369–78.

    CAS  PubMed  Google Scholar 

  177. Barril, N., A.B. Carvalho-Sales, and E.H. Tajara, Detection of numerical chromosome anomalies in interphase cells of benign and malignant thyroid lesions using fluorescence in situ hybridization. Cancer Genet Cytogenet, 2000. 117(1): p. 50–6.

    Article  CAS  PubMed  Google Scholar 

  178. Antonini, P., et al., Numerical aberrations, including trisomy 22 as the sole anomaly, are recurrent in follicular thyroid adenomas. Genes Chromosomes Cancer, 1993. 8(1): p. 63–6.

    CAS  PubMed  Google Scholar 

  179. Bol, S., et al., Structural abnormalities of chromosome 2 in benign thyroid tumors. Three new cases and review of the literature. Cancer Genet Cytogenet, 1999. 114(1): p. 75–7.

    Article  CAS  PubMed  Google Scholar 

  180. Bartnitzke, S., et al., Cytogenetic findings on eight follicular thyroid adenomas including one with a t(10;19). Cancer Genet Cytogenet, 1989. 39(1): p. 65–8.

    Article  CAS  PubMed  Google Scholar 

  181. Bol, S., et al., Molecular cytogenetic investigations define a subgroup of thyroid adenomas with 2p21 breakpoints clustered to a region of less than 450 kb. Cytogenet Cell Genet, 2001. 95(3–4): p. 189–91.

    CAS  PubMed  Google Scholar 

  182. Rippe, V., et al., Identification of a gene rearranged by 2p21 aberrations in thyroid adenomas. Oncogene, 2003. 22(38): p. 6111–4.

    Article  CAS  PubMed  Google Scholar 

  183. Belge, G., et al., Delineation of a 150-kb breakpoint cluster in benign thyroid tumors with 19q13.4 aberrations. Cytogenet Cell Genet, 2001. 93(1–2): p. 48–51.

    CAS  PubMed  Google Scholar 

  184. Belge, G., et al., Breakpoints of 19q13 translocations of benign thyroid tumors map within a 400 kilobase region. Genes Chromosomes Cancer, 1997. 20(2): p. 201–3.

    Article  CAS  PubMed  Google Scholar 

  185. Rippe, V., et al., A KRAB zinc finger protein gene is the potential target of 19q13 translocation in benign thyroid tumors. Genes Chromosomes Cancer, 1999. 26(3): p. 229–36.

    Article  CAS  PubMed  Google Scholar 

  186. Tung, W.S., et al., Allelotype of follicular thyroid carcinomas reveals genetic instability consistent with frequent nondisjunctional chromosomal loss. Genes Chromosomes Cancer, 1997. 19(1): p. 43–51.

    Article  CAS  PubMed  Google Scholar 

  187. Roque, L., et al., Chromosome imbalances in thyroid follicular neoplasms: a comparison between follicular adenomas and carcinomas. Genes Chromosomes Cancer, 2003. 36(3): p. 292–302.

    Article  CAS  PubMed  Google Scholar 

  188. Kitamura, Y., et al., Allelotyping of follicular thyroid carcinoma: frequent allelic losses in chromosome arms 7q, 11p, and 22q. J Clin Endocrinol Metab, 2001. 86(9): p. 4268–72.

    Article  CAS  PubMed  Google Scholar 

  189. Ward, L.S., et al., Studies of allelic loss in thyroid tumors reveal major differences in chromosomal instability between papillary and follicular carcinomas. J Clin Endocrinol Metab, 1998. 83(2): p. 525–30.

    Article  CAS  PubMed  Google Scholar 

  190. Hunt, J.L., et al., Loss of heterozygosity of the VHL gene identifies malignancy and predicts death in follicular thyroid tumors. Surgery, 2003. 134(6): p. 1043–7; discussion 1047-8.

    Article  PubMed  Google Scholar 

  191. Herrmann, M.A., et al., Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers. J Clin Invest, 1991. 88(5): p. 1596–604.

    CAS  PubMed  Google Scholar 

  192. Zhang, J.S., et al., Differential loss of heterozygosity at 7q31.2 in follicular and papillary thyroid tumors. Oncogene, 1998. 17(6): p. 789–93.

    Article  CAS  PubMed  Google Scholar 

  193. Trovato, M., et al., Loss of heterozygosity of the long arm of chromosome 7 in follicular and anaplastic thyroid cancer, but not in papillary thyroid cancer. J Clin Endocrinol Metab, 1999. 84(9): p. 3235–40.

    CAS  PubMed  Google Scholar 

  194. Frisk, T., et al., Low frequency of numerical chromosomal aberrations in follicular thyroid tumors detected by comparative genomic hybridization. Genes Chromosomes Cancer, 1999. 25(4): p. 349–53.

    Article  CAS  PubMed  Google Scholar 

  195. Kitamura, Y., et al., Allelotyping of anaplastic thyroid carcinoma: frequent allelic losses on 1q, 9p, 11, 17, 19p, and 22q. Genes Chromosomes Cancer, 2000. 27(3): p. 244–51.

    Article  CAS  PubMed  Google Scholar 

  196. Zedenius, J., et al., Deletions of the long arm of chromosome 10 in progression of follicular thyroid tumors. Hum Genet, 1996. 97(3): p. 299–303.

    Article  CAS  PubMed  Google Scholar 

  197. Zedenius, J., et al., Allelotyping of follicular thyroid tumors. Hum Genet, 1995. 96(1): p. 27–32.

    Article  CAS  PubMed  Google Scholar 

  198. Yeh, J.J., et al., Fine-structure deletion mapping of 10q22-24 identifies regions of loss of heterozygosity and suggests that sporadic follicular thyroid adenomas and follicular thyroid carcinomas develop along distinct neoplastic pathways. Genes Chromosomes Cancer, 1999. 26(4): p. 322–8.

    Article  CAS  PubMed  Google Scholar 

  199. Nord, B., et al., Sporadic follicular thyroid tumors show loss of a 200-kb region in 11q13 without evidence for mutations in the MEN1 gene. Genes Chromosomes Cancer, 1999. 26(1): p. 35–9.

    Article  CAS  PubMed  Google Scholar 

  200. Matsuo, K., S.H. Tang, and J.A. Fagin, Allelotype of human thyroid tumors: loss of chromosome 11q13 sequences in follicular neoplasms. Mol Endocrinol, 1991. 5(12): p. 1873–9.

    CAS  PubMed  Google Scholar 

  201. Grebe, S.K., et al., Frequent loss of heterozygosity on chromosomes 3p and 17p without VHL or p53 mutations suggests involvement of unidentified tumor suppressor genes in follicular thyroid carcinoma. J Clin Endocrinol Metab, 1997. 82(11): p. 3684–91.

    Article  CAS  PubMed  Google Scholar 

  202. Hemmer, S., et al., DNA copy number changes in thyroid carcinoma. Am J Pathol, 1999. 154(5): p. 1539–47.

    CAS  PubMed  Google Scholar 

  203. Hemmer, S., et al., Comparison of benign and malignant follicular thyroid tumours by comparative genomic hybridization. Br J Cancer, 1998. 78(8): p. 1012–7.

    CAS  PubMed  Google Scholar 

  204. Gilliland, D.G. and M.S. Tallman, Focus on acute leukemias. Cancer Cell, 2002. 1(5): p. 417–20.

    Article  CAS  PubMed  Google Scholar 

  205. Okuda, T., et al., Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood, 1998. 91(9): p. 3134–43.

    CAS  PubMed  Google Scholar 

  206. Jansen, J.H., et al., Multimeric complexes of the PML-retinoic acid receptor alpha fusion protein in acute promyelocytic leukemia cells and interference with retinoid and peroxisome-proliferator signaling pathways. Proc Natl Acad Sci USA, 1995. 92(16): p. 7401–5.

    CAS  PubMed  Google Scholar 

  207. Neubauer, A., et al., Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood, 1994. 83(6): p. 1603–11.

    CAS  PubMed  Google Scholar 

  208. Radich, J.P., et al., N-ras mutations in adult de novo acute myelogenous leukemia: prevalence and clinical significance. Blood, 1990. 76(4): p. 801–7.

    CAS  PubMed  Google Scholar 

  209. Stirewalt, D.L., et al., FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood, 2001. 97(11): p. 3589–95.

    Article  CAS  PubMed  Google Scholar 

  210. Coghlan, D.W., et al., The incidence and prognostic significance of mutations in codon 13 of the N-ras gene in acute myeloid leukemia. Leukemia, 1994. 8(10): p. 1682–7.

    CAS  PubMed  Google Scholar 

  211. Nakao, M., et al., Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia, 1996. 10(12): p. 1911–8.

    CAS  PubMed  Google Scholar 

  212. Gilliland, D.G. and J.D. Griffin, The roles of FLT3 in hematopoiesis and leukemia. Blood, 2002. 100(5): p. 1532–42.

    Article  CAS  PubMed  Google Scholar 

  213. Kiyoi, H., et al., Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood, 1999. 93(9): p. 3074–80.

    CAS  PubMed  Google Scholar 

  214. Greenblatt, M.S., et al., Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res, 1994. 54(18): p. 4855–78.

    CAS  PubMed  Google Scholar 

  215. Wattel, E., et al., p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood, 1994. 84(9): p. 3148–57.

    CAS  PubMed  Google Scholar 

  216. Higuchi, M., et al., Expression of a conditional AML-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell, 2002. 1: p. 63–74.

    Article  CAS  PubMed  Google Scholar 

  217. He, L.Z., et al., Two critical hits for promyelocytic leukemia. Mol Cell, 2000. 6(5): p. 1131–41.

    Article  CAS  PubMed  Google Scholar 

  218. Pollock, J.L., et al., A bcr-3 isoform of RARalpha-PML potentiates the development of PML-RARalpha-driven acute promyelocytic leukemia. Proc Natl Acad Sci U S A, 1999. 96(26): p. 15103–8.

    Article  CAS  PubMed  Google Scholar 

  219. Kelly, L.M., et al., PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci U S A, 2002. 99(12): p. 8283–8.

    Article  CAS  PubMed  Google Scholar 

  220. Heinlein, C.A., et al.. Identification of ARA70 as a ligand-enhanced coactivator for the peroxisome proliferator-activated receptor gamma. J Biol Chem, 1999. 274(23): p. 16147–52.

    Article  CAS  PubMed  Google Scholar 

  221. Yeh, S. and C. Chang, Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA, 1996. 93(11): p. 5517–21.

    Article  CAS  PubMed  Google Scholar 

  222. Monaco, C., et al., unpublished data.

    Google Scholar 

  223. French, C.A., et al., BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19). Am J Pathol, 2001. 159(6): p. 1987–92.

    CAS  PubMed  Google Scholar 

  224. French, C.A., et al., BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res, 2003. 63(2): p. 304–7.

    CAS  PubMed  Google Scholar 

  225. Tognon, C., et al., Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell, 2002. 2(5): p. 367–76.

    Article  CAS  PubMed  Google Scholar 

  226. Argani, P., et al., Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol, 2001. 159(1): p. 179–92.

    CAS  PubMed  Google Scholar 

  227. Renshaw, A.A., et al., Renal cell carcinomas in children and young adults: increased incidence of papillary architecture and unique subtypes. Am J Surg Pathol, 1999. 23(7): p. 795–802.

    Article  CAS  PubMed  Google Scholar 

  228. Clark, J., et al., Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene, 1997. 15(18): p. 2233–9.

    Article  CAS  PubMed  Google Scholar 

  229. Heimann, P., et al., Fusion of a novel gene, RCC17, to the TFE3 gene in t(X;17)(p11.2;q25.3)-bearing papillary renal cell carcinomas. Cancer Res, 2001. 61(10): p. 4130–5.

    CAS  PubMed  Google Scholar 

  230. Davis, I.J., et al., Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci USA, 2003. 100(10): p. 6051–6.

    Article  CAS  PubMed  Google Scholar 

  231. Loewy, J.W., et al., Statistical methods that distinguish between attributes of assessment: prolongation of life versus quality of life. Med Decis Making, 1992. 12(2): p. 83–92.

    CAS  PubMed  Google Scholar 

  232. Hsi, A.C., D.J. Davis, and F.C. Sherman, Neonatal gangrene in the newborn infant of a diabetic mother. J Pediatr Orthop, 1985. 5(3): p. 358–60.

    CAS  PubMed  Google Scholar 

  233. Rowley, J.D., Molecular genetics in acute leukemia. Leukemia, 2000. 14(3): p. 513–7.

    Article  CAS  PubMed  Google Scholar 

  234. Reis-Filho, J.S., et al., p63 expression in solid cell nests of the thyroid: further evidence for a stem cell origin. Mod Pathol, 2003. 16(1): p. 43–8.

    Article  PubMed  Google Scholar 

  235. Weisberg, E., et al., Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell, 2002. 1(5): p. 433–43.

    Article  CAS  PubMed  Google Scholar 

  236. Kelly, L.M., et al., CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell, 2002. 1(5): p. 421–32.

    Article  CAS  PubMed  Google Scholar 

  237. Spiekermann, K., et al., The protein tyrosine kinase inhibitor SU5614 inhibits FLT3 and induces growth arrest and apoptosis in AML-derived cell lines expressing a constitutively activated FLT3. Blood, 2003. 101(4): p. 1494–504.

    Article  CAS  PubMed  Google Scholar 

  238. Druker, B.J., et al., Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med, 2001. 344(14): p. 1038–42.

    CAS  PubMed  Google Scholar 

  239. Druker, BJ., et al., Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med, 2001. 344(14): p. 1031–7.

    CAS  PubMed  Google Scholar 

  240. Tallman, M.S., et al., All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood, 2002. 100(13): p. 4298–302.

    Article  CAS  PubMed  Google Scholar 

  241. Rego, E.M., et al., Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc Natl Acad Sci USA, 2000. 97(18): p. 10173–8.

    Article  CAS  PubMed  Google Scholar 

  242. Fenaux, P., et al., A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood, 1999. 94(4): p. 1192–200.

    CAS  PubMed  Google Scholar 

  243. Carniti, C., et al., PP1 inhibitor induces degradation of RETMEN2A and RETMEN2B oncoproteins through proteosomal targeting. Cancer Res, 2003. 63(9): p. 2234–43.

    CAS  PubMed  Google Scholar 

  244. Carlomagno, F., et al., The kinase inhibitor PP1 blocks tumorigenesis induced by RET oncogenes. Cancer Res, 2002. 62(4): p. 1077–82.

    CAS  PubMed  Google Scholar 

  245. Carlomagno, F., et al., ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res, 2002. 62(24): p. 7284–90.

    CAS  PubMed  Google Scholar 

  246. Strock, CJ., et al., CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth. Cancer Res, 2003. 63(17): p. 5559–63.

    CAS  PubMed  Google Scholar 

  247. Carlomagno, F., et al., Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl) pyrazolo [3,4-d]pyrimidine (PP2). J Clin Endocrinol Metab, 2003. 88(4): p. 1897–902.

    Article  CAS  PubMed  Google Scholar 

  248. Podtcheko, A., et al., The selective tyrosine kinase inhibitor, STI571, inhibits growth of anaplastic thyroid cancer cells. J Clin Endocrinol Metab, 2003. 88(4): p. 1889–96.

    Article  CAS  PubMed  Google Scholar 

  249. Lanzi, C., et al., Inhibition of transforming activity of the ret/ptc1 oncoprotein by a 2-indolinone derivative. Int J Cancer, 2000. 85(3): p. 384–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Kroll, T.G. (2005). Molecular Events in Follicular Thyroid Tumors. In: Farid, N.R. (eds) Molecular Basis of Thyroid Cancer. Cancer Treatment and Research, vol 122. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8107-3_4

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8107-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8106-4

  • Online ISBN: 978-1-4020-8107-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics