Skip to main content

Endocrine Disruption and the Female

  • Chapter
Endocrine-Disrupting Chemicals

Part of the book series: Contemporary Endocrinology ((COE))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colborn T, Clement C, eds. Chemically Induced Alterations in Sexual and Functional Development: The Wildlife/Human Connection. Princeton, NJ: Princeton Scientific Publishing, 1992.

    Google Scholar 

  2. Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 1993; 101:378–384.

    PubMed  CAS  Google Scholar 

  3. Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA, Wilson EM. Persistent DDT metabolite p,p′-DDE is a potent androgen receptor antagonist. Nature 1995; 375:581–585.

    PubMed  CAS  Google Scholar 

  4. Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 2002; 87:5185–5190.

    PubMed  CAS  Google Scholar 

  5. Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us. Endocr Rev 1999; 20:358–417.

    PubMed  CAS  Google Scholar 

  6. Silva E, Rajapakse N, Kortenkamp A. Something from ‘‘nothing’’ – eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 2002; 36:1751–1756.

    PubMed  CAS  Google Scholar 

  7. Milligan SR, Khan O, Nash M. Competitive binding of xenobiotic oestrogens of rat alpha-fetoprotein and to sex steroid binding proteins in human and rainbow trout (oncorhynchus mykiss) plasma. Gen Comp Endocrinol 1998; 112:89–95.

    PubMed  CAS  Google Scholar 

  8. Wozniak AL, Bulayeva NN, Watson CS. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-α -mediated Ca++ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ Health Perspect 2005; 113:431–439.

    PubMed  CAS  Google Scholar 

  9. NTP. National Toxicology Program’s Report of the Endocrine Disruptors Low Dose Peer Review. Research Triangle Park, NC: National Toxicology Program, 2001. Available at http://ntp.niehs.nih.gov/ntp/htdocs/liason/LowDosePeerFinalRpt.pdf, accessed on March 5, 2006.

    Google Scholar 

  10. Alworth LC, Howdeshell KL, Ruhlen RL, Day JK, Lubahn DB, Huang TH-M, et al. Uterine responsiveness to estradiol and DNA methylation are altered by fetal exposure to diethylstilbestrol and methoxychlor in CD-1 mice: effects of low versus high doses. Toxicol Appl Pharmacol 2002; 183:10–22.

    PubMed  CAS  Google Scholar 

  11. Rubin BS, Murray MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low doses of bisphenol-A affects body weight, patterns of estrous cyclicity and plasma LH levels. Environ Health Perspect 2001; 109:675–680.

    PubMed  CAS  Google Scholar 

  12. vom Saal FS, Timms BG, Montano MM, Palanza P, Thayer KA, Nagel SC, et al. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Natl Acad Sci USA 1997; 94:2056–2061.

    Google Scholar 

  13. vom Saal FS, Timms BG. The role of natural and man-made estrogens in prostate development. In: Naz RK, editor. Endocrine Disruptors: Effects on Male and Female Reproductive Systems. Boca Raton, FL: CRC Press, 1999: 307–328.

    Google Scholar 

  14. Geck P, Maffini MV, Szelei J, Sonnenschein C, Soto AM. Androgen-induced proliferative quiescence in prostate cancer: the role of AS3 as its mediator. Proc Natl Acad Sci USA 2000; 97:10185–10190.

    PubMed  CAS  Google Scholar 

  15. Sonnenschein C, Olea N, Pasanen ME, Soto AM. Negative controls of cell proliferation: human prostate cancer cells and androgens. Cancer Res 1989; 49:3474–3481.

    PubMed  CAS  Google Scholar 

  16. Vandenberg LN, Wadia PR, Schaeberle CM, Rubin BS, Sonnenschein C, Soto AM. The mammary gland response to estradiol: monotonic at the cellular level, non-monotonic at the tissue-level of organization. J Steroid Biochem Mol Biol 2006; 101.

    Google Scholar 

  17. Conolly RB, Lutz WK. Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol Sci 2004; 77:151–157.

    PubMed  CAS  Google Scholar 

  18. vom Saal FS, Hughes C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect 2005; 113:926–933.

    Google Scholar 

  19. Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal FS. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 2003; 111:994–1006.

    PubMed  CAS  Google Scholar 

  20. Bern HA. The fragile fetus. In: Colburn T, Clement C, editors. Chemically-Induced Alterations in Sexual and Functional Development: the Wildlife/Human Connection. Princeton, NJ: Princeton Scientific Publishing Co., Inc, 1992: 9–15.

    Google Scholar 

  21. Mittendorf R. Teratogen update: carcinogenesis and teratogenesis associated with exposure to diethylstilbestrol (DES) in utero. Teratology 1995; 51:435–445.

    PubMed  CAS  Google Scholar 

  22. Herbst AL. Behavior of estrogen-associated female genital tract cancer and its relation to neoplasia following intrauterine exposure to diethylstilbestrol (DES). Gynecol Oncol 2000; 76:147–156.

    PubMed  CAS  Google Scholar 

  23. McLachlan JA, Newbold RR, Bullock BC. Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. Cancer Res 1980; 40:3988–3999.

    PubMed  CAS  Google Scholar 

  24. Newbold RR. Diethylstilbestrol (DES) and environmental estrogens influence the developing female reproductive system. In: Naz RK, editor. Endocrine Disruptors: Effects on the Male and Female Reproductive Sytems. Boca Raton, FL: CRC Press, 1999: 39–56.

    Google Scholar 

  25. Newbold RR, Jefferson WN, Banks EP. Developmental Exposure to Low Doses of Diethylstilbestrol (DES) Results in Permanent Alterations in the Reproductive Tract. The Endocrine Society, Abstract, Annual Meeting, 1999.

    Google Scholar 

  26. Markey CM, Michaelson CL, Veson EC, Sonnenschein C, Soto AM. The rodent uterotrophic assay: response to Ashby and Newbold et al. Environ Health Perspect 2001; 109:A569–A570.

    Google Scholar 

  27. Markey CM, Luque EH, Munoz de Toro MM, Sonnenschein C, Soto AM. In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 2001; 65:1215–1223.

    PubMed  CAS  Google Scholar 

  28. Munoz de Toro MM, Markey CM, Wadia PR, Luque EH, Rubin BS, Sonnenschein C, et al. Perinatal exposure to bisphenol A alters peripubertal mammary gland development in mice. Endocrinology 2005; 146:4138–4147.

    PubMed  CAS  Google Scholar 

  29. Rubin BS, Lenkowski JR, Schaeberle CM, Vandenberg LN, Ronsheim PM, Soto AM. Evidence of altered brain sexual differentiation in mice exposed perinatally to low environmentally relevant levels of bisphenol A. Endocrinology. 2006; 147:3681–3691.

    PubMed  CAS  Google Scholar 

  30. Gaido KW, Maness SC, McDonnell DP, Dehal SS, Kupfer D, Safe S. Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: structure-activity studies. Mol Pharmacol 2000; 58:852–858.

    PubMed  CAS  Google Scholar 

  31. Ohtake F, Takeyama K-I, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, et al. Modulation of oestrogen receptor signalling by association with activated dioxin receptor. Nature 2003; 423:545–550.

    PubMed  CAS  Google Scholar 

  32. Markey CM, Michaelson CL, Sonnenschein C, Soto AM. Alkylphenols and bisphenol A as environmental estrogens. In:Metzler M, editor. The Handbook of Environmental Chemistry. Vol 3. Part L, Endocrine Disruptors - Part I. Berlin and Heidelberg:Springer Verlag, 2001: 129–153.

    Google Scholar 

  33. McLeese DW, Zitko V, Sergeant DB, Burridge L, Metcalf CD. Lethality and accumulation of alkylphenol in aquatic fauna. Chemosphere 1981; 10:723–730.

    CAS  Google Scholar 

  34. Dodds EC, Lawson W. Molecular structure in relation to oestrogenic activity. Compounds without a phenathrene nucleus. Proc Royal Soc Lon B 1938; 125:222–232.

    Google Scholar 

  35. Krishnan AV, Starhis P, Permuth SF, Tokes L, Feldman D. bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 1993; 132:2279–2286.

    PubMed  CAS  Google Scholar 

  36. Brotons JA, Olea-Serrano MF, Villalobos M, Olea N. Xenoestrogens released from lacquer coating in food cans. Environ Health Perspect 1994; 103:608–612.

    Google Scholar 

  37. Biles JE, McNeal TP, Begley TH, Hollifield HC. Determination of bisphenol-A in reusable polycarbonate food-contact plastics and migration to food simulating liquids. J Agric Food Chem 1997; 45:3541–3544.

    CAS  Google Scholar 

  38. Olea N, Pulgar R, Perez P, Olea-Serrano F, Rivas A, Novillo-Fertrell A, et al. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect 1996; 104(3):298–305.

    PubMed  CAS  Google Scholar 

  39. Matsumoto H, Adachi S, Suzuki Y. Bisphenol A in ambient air particulates responsible for the proliferation of MCF-7 human breast caner cells, its concentration changes over 6 months. Arch Environ Contam Toxicol 2005; 48(4):459–466.

    PubMed  CAS  Google Scholar 

  40. Berkner S, Streck G, Herrmann R. Development and validation of a method for determination of trace levels of alkylphenols and bisphenol A in atmospheric samples. Chemosphere 2004; 54(4):575–584.

    PubMed  CAS  Google Scholar 

  41. Rudel RA, Brody JG, Spengler JD, Vallarino J, Geno PW, Sun G, et al. Identification of selected hormonally active agents and animal mammary carcinogenesis in commercial and residential air and dust samples. J Air Waste Manage Assoc 2001; 51:499–513.

    CAS  Google Scholar 

  42. Behnisch PA, Fujii K, Shiozaki K, Kawakami I, Sakai S. Estrogenic and dioxin-like potency in each step of a controlled landfill leachate treatment plant in Japan. Chemosphere 2001; 43:977–984.

    PubMed  CAS  Google Scholar 

  43. Rodrigues-Mozaz S, Lopez de Alda M, Barcelo D. Analysis of bisphenol A in natural waters by means of an optical immunosensor. Water Res 2005; 39:5071–5079.

    Google Scholar 

  44. Yoo SD, Shin BS, Lee BM, Lee KC, Han SY, Kim HS, et al. Bioavailability and mammary excretion of bisphenol A in Sprague Dawley rats. J Toxicol Environ Health A 2001; 64:417–426.

    PubMed  CAS  Google Scholar 

  45. Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect 2002; 110:A703–A707.

    PubMed  Google Scholar 

  46. Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 2002; 17:2839–2841.

    PubMed  CAS  Google Scholar 

  47. Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham JL. Urinary concentrations of bisphenol A and 4-Nonylphenol in a human reference population. Environ Health Perspect 2005; 113:391–395.

    PubMed  CAS  Google Scholar 

  48. Arakawa C, Fujimaki K, Yoshinaga J, Imai H, Serizawa S, Shiraishi H. Daily urinary excretion of bisphenol A. Environ Health Prev Med 2004; 9:22–26.

    CAS  Google Scholar 

  49. Sun Y, Irie M, Kishikawa N, Wada M, Kuroda N, Nakashima K. Determination of bisphenol A in human breast milk by HPLC with column-switching and fluorescence detection. Biomed Chromatogr 2004; 18:501–507.

    PubMed  CAS  Google Scholar 

  50. Takahashi O, Oishi S. Disposition of orally administered 2,2-bis(4-hydroxyphenyl) propane (bisphenol A) in pregnant rats and placental transfer to fetuses. Environ Health Perspect 2000; 108:931–935.

    PubMed  CAS  Google Scholar 

  51. Zalko D, Soto AM, Dolo L, Dorio C, Ratahao E, Debrauwer L, et al. Biotransformations of bisphenol A in a mammalian model: answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice. Environ Health Perspect 2003; 111:309–319.

    PubMed  CAS  Google Scholar 

  52. Hogan B, Beddington R, Costantini F, Lacy E. Summary of mouse development. In: Manipulating the Mouse Embryo: a Laboratory Manual. Plainview, NY:Cold Spring Harbor Laboratory Press, 1994: 21–113.

    Google Scholar 

  53. Lemmen JG, Broekhof JLM, Kuiper GGJM, Gustafsson JA, Van Der Saag PT, van der Burg B. Expression of estrogen receptor alpha and beta during mouse embryogensis. Mech Dev 1999; 81:163–167.

    PubMed  CAS  Google Scholar 

  54. Yin Y, Ma L. Development of the mammalian female reproductive tract. J Biochem (Tokyo) 2005; 137:677–683.

    CAS  Google Scholar 

  55. Okada A, Sato T, Ohta Y, Iguchi T. Sex steroid hormone receptors in the developing female reproductive tract of laboratory rodents. J Toxicol Sci 2005; 30:75–89.

    PubMed  CAS  Google Scholar 

  56. Robinson GW, Karpf ABC, Kratochwil K. Regulation of mammary gland development by tissue interaction. J Mammary Gland Biol Neoplasia 1999; 4:9–19.

    PubMed  CAS  Google Scholar 

  57. Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S. Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 2003; 71:1–17.

    PubMed  CAS  Google Scholar 

  58. Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM. Exposure to the xenoestrogen bisphenol-A alters development of the fetal mammary gland. Endocrinology 2007; 148:116–127.

    PubMed  CAS  Google Scholar 

  59. Narbaitz R, Stumpf WE, Sar M. Estrogen receptors in the mammary gland primordia of fetal mouse. Anat Embryol (Berl) 1980; 158:161–166.

    CAS  Google Scholar 

  60. Saji S, Jensen EV, Nilsson S, Rylander T, Warner M, Gustafsson J-A. Estrogen receptors α and β in the rodent mammary gland. Proc Natl Acad Sci USA 2000; 97:337–342.

    PubMed  CAS  Google Scholar 

  61. Markey CM, Coombs MA, Sonnenschein C, Soto AM. Mammalian development in a changing environment: exposure to endocrine disruptors reveals the developmental plasticity of steroid-hormone target organs. Evol Dev 2003; 5:1–9.

    Google Scholar 

  62. Suzuki A, Sugihara A, Uchida K, Sato T, Ohta Y, Katsu Y, et al. Developmental effects of perinatal exposure to bisphenol-A and diethylstilbestrol on reproductive organs in female mice. Reprod Toxicol 2002; 16:107–116.

    PubMed  CAS  Google Scholar 

  63. Nikaido Y, Yoshizawa K, Danbara N, Tsujita-Kyutoku M, Yuri T, Uehara N, et al. Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod Toxicol 2004; 18:803–811.

    PubMed  CAS  Google Scholar 

  64. Hunt PA, Koehler KE, Susiarjo M, Hodges CA, Ilagan A, Voigt RC, et al. Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Curr Biol 2003; 13:546–553.

    PubMed  CAS  Google Scholar 

  65. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2001; 2:280–291.

    PubMed  CAS  Google Scholar 

  66. Sugiura-Ogasawara M, Ozaki Y, Sonta S-I, Makino T, Suzumori K. Exposure to bisphenol A is associated with recurrent miscarriage. Hum Reprod 2005; 20:2325–2329.

    PubMed  CAS  Google Scholar 

  67. Schonfelder G, Flick B, Mayr E, Talsness C, Paul M, Chahoud I. In utero exposure to low doses of bisphenol A lead to long-term deleterious effects in the vagina. Neoplasia 2002; 4:98–102.

    PubMed  CAS  Google Scholar 

  68. Yoshida A, Newbold RR, Dixon D. Effects of neonatal diethylstilbestrol (DES) exposure on morphology and growth patterns of endometrial epithelial cells in CD-1 mice. Toxicol Pathol 1999; 27:325–333.

    PubMed  CAS  Google Scholar 

  69. Hendry WJ, Zheng X, Leavitt WW, Branham WS, Sheehan DM. Endometrial hyperplasia and apoptosis following neonatal diethylstilbestrol exposure and subsequent estrogen stimulation in both host and transplanted hamster uteri. Cancer Res 1997; 57:1903–1908.

    PubMed  CAS  Google Scholar 

  70. Newbold RR, Bullock BC, McLachlan JA. Uterine adenocarcinoma in mice following developmental treatment with estrogens: a model for hormonal carcinogenesis. Cancer Res 1990; 50:7677–7681.

    PubMed  CAS  Google Scholar 

  71. Couse JF, Davis VL, Hanson RB, Jefferson WN, McLachlan JA, Bullock BC, et al. Accelerated onset of uterine tumors in transgenic mice with aberrant expression of the estrogen receptor after nenatal exposure to diethylstilbestrol. Mol Carcinog 1997; 19:236–242.

    PubMed  CAS  Google Scholar 

  72. Cooke PS, Buchanan DL, Young P, Setiawan T, Broody J, Korach KS, et al. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci USA 1997; 94:6535–6540.

    PubMed  CAS  Google Scholar 

  73. Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon J-P. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev 2003; 24:668–693.

    PubMed  Google Scholar 

  74. Rasier G, Toppari J, Parent AS, Bourguignon JP. Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data. Mol Cell Endocrinol 2006; 254–255:187–201.

    Google Scholar 

  75. Naftolin F. Brain aromatization of androgens. J Reprod Med 1994; 39:257–261.

    PubMed  CAS  Google Scholar 

  76. Honma S, Suzuki A, Buchanan DL, Katsu Y, Watanabe H, Iguchi T. Low dose effects of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod Toxicol 2002; 16:117–122.

    PubMed  CAS  Google Scholar 

  77. Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS. Exposure to bisphenol A advances puberty. Nature 1999; 401:763–764.

    PubMed  CAS  Google Scholar 

  78. Nandi S, Guzman R, Yang J. Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl Acad Sci USA 1995; 92:3650–3657.

    PubMed  CAS  Google Scholar 

  79. Humphreys RC, Krajewska M, Krnacik S, Jæger R, Weiher H, Krajewski S, et al. Apoptosis in the terminal end bud of the murine mammary gland: a mechanism of ductal morphogenesis. Development 1996; 122:4013–4022.

    PubMed  CAS  Google Scholar 

  80. Richert MM, Schwertfeger KL, Ryder JW, Anderson SM. An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 2000; 5:227–241.

    PubMed  CAS  Google Scholar 

  81. Hennighausen L, Robinson GW. Think globally, act locally: the making of a mouse mammary gland. Genes Dev 1998; 12:449–455.

    PubMed  CAS  Google Scholar 

  82. Daniel CW, Smith GH. The mammary gland: a model for development. J Mammary Gland Biol Neoplasia 1999; 4:3–8.

    PubMed  CAS  Google Scholar 

  83. Ekbom A, Trichopoulos D, Adami HO, Hsieh CC, Lan SJ. Evidence of prenatal influences on breast cancer risk. Lancet 1992; 340:1015–1018.

    PubMed  CAS  Google Scholar 

  84. Weiss HA, Potischman NA, Brinton LA, Brogan D, Coates RJ, Gammon MD, et al. Prenatal and perinatal risk factors for breast cancer in young women. Epidemiology 1997; 8:181–187.

    PubMed  CAS  Google Scholar 

  85. Braun MM, Ahlbom A, Floderus B, Brinton LA, Hoover RN. Effect of twinship on incidence of cancer of the testis, breast, and other sites (Sweden). Cancer Causes Control 1995; 6:519–524.

    PubMed  CAS  Google Scholar 

  86. McCormack VA, Dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006; 15:1159–1169.

    PubMed  Google Scholar 

  87. Cohn B, Wolff M, Cirillo P, Sholtz R, Christianson R, van den Berg B, et al. Timing of DDT exposure and breast cancer before age 50. Proceedings of the International Society for Environmental Epidemiology. Epidemiology 2002; 13:S197.

    Google Scholar 

  88. Hoyer AP, Jorgensen T, Brock JW, Grandjean P. Organochloride exposure and breast cancer survival. J Clin Epidemiol 2000; 53:323–330.

    PubMed  CAS  Google Scholar 

  89. Hoyer AP, Grandjean P, Jorgensen T, Brock JW, Hartvig HB. Organochloride exposure and risk of breast cancer. Lancet 1998; 352:1816–1820.

    PubMed  CAS  Google Scholar 

  90. Soto AM, Fernandez MF, Luizzi MF, Oles Karasko AS, Sonnenschein C. Developing a marker of exposure to xenoestrogen mixtures in human serum. Environ Health Perspect 1997; 105:647–654.

    PubMed  CAS  Google Scholar 

  91. Ibarluzea JM, Fernàndez MF, Santa-Marina L, Olea-Serrano MF, Rivas AM, Aurrekoetxea JJ, et al. Breast cancer risk in the combined effect of environmental estrogens. Cancer Causes Control 2004; 15:591–600.

    Google Scholar 

  92. Calle EE, Mervis CA, Thun MJ, Rodriguez C, Wingo PA, Heath CWJ. Diethylstilbestrol and risk of fatal breast cancer in a prospective cohort of US women. Am J Epidemiol 1996; 144:645–652.

    PubMed  CAS  Google Scholar 

  93. Palmer JR, Hatch EE, Rosenberg CL, Hartge P, Kaufman RH, Titus-Ernstoff L, et al. Risk of breast cancer in women exposed to diethylstilbestrol in utero: preliminary results (United States). Cancer Causes Control 2002; 13:753–758.

    PubMed  Google Scholar 

  94. Land CE, Tokunaga M, Koyama K, Soda M, Preston DL, Nishimori I, et al. Incidence of female breast cancer among atomic bomb survivors, Hiroshima and Nagasaki, 1950–1990. Radiat Res 2003; 160:707–117.

    PubMed  CAS  Google Scholar 

  95. Gullino PM, Pettigrew HM, Grantham FH. N-nitrosomethylurea as mammary gland carcinogen in rats. J Natl Cancer Inst 1975; 54:401–414.

    PubMed  CAS  Google Scholar 

  96. Ma R, Sassoon DA. PCBs exert an estrogenic effect through repression of the Wnt7a signaling pathway in the female reproductive tract. Environ Health Perspect 2006; 114:898–904.

    PubMed  CAS  Google Scholar 

  97. Kitajewski J, Sassoon DA. The emergence of molecular gynecology: homeobox and Wnt genes in the female reproductive tract. BioEssays 2000; 22:902–910.

    PubMed  CAS  Google Scholar 

  98. Ma L, Benson GV, Lim H, Dey SK, Maas RL. Abdominal B (AbdB) Hoxa genes: regulation in adult uterus by estrogen and progesterone and repression in mullerian duct by the synthetic estrogen diethylstilbestrol (DES). Dev Biol 1998; 197:141–154.

    PubMed  CAS  Google Scholar 

  99. Block K, Kardana A, Igarashi P, Taylor HS. In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing Müllerian system. FASEB J 2000; 14:1101–1108.

    PubMed  CAS  Google Scholar 

  100. Newbold RR, Padilla-Banks E, Jefferson WN. Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology 2006; 147(Suppl 6):S11–S17.

    PubMed  CAS  Google Scholar 

  101. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005; 308:1466–1469.

    PubMed  CAS  Google Scholar 

  102. Atanassova N, McKinnell C, Turner KJ, Walker M, Fisher JS, Morley M, et al. Comparative effects of neonatal exposure of male rats to potent and weak (environmental) estrogens on spermatogenesis at puberty and the relationship to adult testis size and fertility: evidence for stimulatory effects of low estrogen levels. Endocrinology 2000; 141:3898–3907.

    PubMed  CAS  Google Scholar 

  103. Khurana S, Ranmal S, Ben-Jonathan N. Exposure of newborn male and female rats to environmental estrogens: delayed and sustained hyperprolatinemia and alterations in estrogen receptor expression. Endocrinology 2000; 141:4512–4517.

    PubMed  CAS  Google Scholar 

  104. Orikasa C, Kondo Y, Hayashi S, McEwen BS, Sakuma Y. Sexually dimorphic expression of ER beta in the anteroventral periventricular nucleus of the rat preoptic area: implication in luteinizing hormone surge. Proc Natl Acad Sci USA 2002; 99:3306–3311.

    PubMed  CAS  Google Scholar 

  105. Simerly RB. Prodynorphin and proenkephalin gene expression in the anteroventral periventricular nucleus of the rat: sexual differentiation and hormonal regulation. Mol Cell Neurosci 1991; 2:473–484.

    CAS  Google Scholar 

  106. Herbison AE. Identification of a sexually dimorphic neural population immunoreactive for calcitonin gene-related peptide (CGRP) in the rat medial preoptic area. Brain Res 1992; 591:289–295.

    PubMed  CAS  Google Scholar 

  107. Okamura H, Yokosuka M, Hayashi S. Induction of substance P-immunoreactivity by estrogen in neurons containing estrogen receptors in the anteroventral periventricular nucleus of female but not male rats. J Neuroendocr 1994; 6:609–615.

    CAS  Google Scholar 

  108. Simerly RB. Hormonal control of the development and regulation of tyrosine hydroxylase expression within a sexually dimorphic population of dopaminergic cells in the hypothalamus. Mol Brain Res 1989; 6:297–310.

    PubMed  CAS  Google Scholar 

  109. Simerly RB, Swanson LW, Gorski RA. The distribution of monoaminergic cells and fibers in a periventricular preoptic nucleus involved in the control of gonadotropin release: immunohistochemical evidence for a dopaminergic sexual dimorphism. Brain Res 1985; 330:55–64.

    PubMed  CAS  Google Scholar 

  110. Simerly RB, Zee MC, Pendleton JW, Lubahn DB, Korach KS. Estrogen receptor-dependant sexual differentiation of dopaminergic neurons in the preoptic region of the mouse. Proc Natl Acad Sci USA 1997; 94:14077–14082.

    PubMed  CAS  Google Scholar 

  111. Simonian SX, Spratt DP, Herbison AE. Identification and characterization of estrogen receptor α-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat. J Comp Neurol 1999; 411:346–358.

    PubMed  CAS  Google Scholar 

  112. Le WW, Berghorn KA, Rassnick S, Hoffman GE. Periventricular preoptic area neurons coactivated with lutenizing hormone (LH)-releasing hormone (LHRH) neurons at the time of the LH surge are LHRH afferents. Endocrinology 1999; 140:510–519.

    PubMed  CAS  Google Scholar 

  113. Kubo K, Arai O, Ogata R, Omura M, Hori T, Aou S. Exposure to bisphenol A during the fetal and suckling periods disrupts sexual differentiation of the locus coeruleus and of behavior in the rat. Neurosci Lett 2001; 304:73–76.

    PubMed  CAS  Google Scholar 

  114. Kubo K, Arai O, Omura M, Watanabe R, Ogata R, Aou S. Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci Res 2003; 45:345–356.

    PubMed  CAS  Google Scholar 

  115. Martins-Afferri MP, Ferreira-Silva IA, Franci CR, Anselmo-Franci JA. LHRH release depends on Locus Coerulius noradrenergic inputs to the medial preoptic area and median eminence. Brain Res Bull 2003; 61:521–527.

    PubMed  CAS  Google Scholar 

  116. Anselmo-Franci JA, Franci CR, Krulich L, Antunes-Rodrigues J, McCann SM. Locus Coeruleus lesions decrease norepinephrine input into the medial pre-optic and medial basal hypothalamus and block the PH, FSH and prolactin preovulatory surge. Brain Res 1997; 767:289–296.

    PubMed  CAS  Google Scholar 

  117. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer 2002; 2:331–342.

    PubMed  CAS  Google Scholar 

  118. Ho S-M, Tang WY, Belmonte de Frausto J, Prins GS. Developmental exposure to estradiol and bisphenol a increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 2006; 66:5624–5632.

    PubMed  CAS  Google Scholar 

  119. Weinberg RA. The Biology of Cancer. New York: Taylor & Francis, 2006.

    Google Scholar 

  120. Soto AM, Sonnenschein C. The somatic mutation theory of cancer: growing problems with the paradigm. BioEssays 2004; 26:1097–1107.

    PubMed  CAS  Google Scholar 

  121. Sonnenschein C, Soto AM. The Society of Cells: Cancer and Control of Cell Proliferation. New York: Springer Verlag, 1999.

    Google Scholar 

  122. Maffini MV, Soto AM, Calabro JM, Ucci AA, Sonnenschein C. The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 2004; 117:1495–1502.

    PubMed  CAS  Google Scholar 

  123. Maffini MV, Calabro JM, Soto AM, Sonnenschein C. Stromal regulation of neoplastic development: age-dependent normalization of neoplastic mammary cells by mammary stroma. Am J Pathol 2005; 67:1405–1410.

    Google Scholar 

  124. Markey CM, Rubin BS, Soto AM, Sonnenschein C. Endocrine disruptors from Wingspread to environmental developmental biology. J Steroid Biochem Mol Biol 2003; 83:235–244.

    Google Scholar 

  125. Soto AM, Sonnenschein C. Emergentism as a default: cancer as a problem of tissue organization. J Biosci 2005; 30:103–118.

    PubMed  CAS  Google Scholar 

  126. Gilbert SF, Sarkar S. Embracing complexity: organicism for the 21st century. Dev Dyn 2000; 219:1–9.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Soto, A.M., Rubin, B.S., Sonnenschein, C. (2007). Endocrine Disruption and the Female. In: Gore, A.C. (eds) Endocrine-Disrupting Chemicals. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/1-59745-107-X_2

Download citation

  • DOI: https://doi.org/10.1007/1-59745-107-X_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-830-0

  • Online ISBN: 978-1-59745-107-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics