Skip to main content

Endocrine-Disrupting Chemicals and the Brain

  • Chapter
Endocrine-Disrupting Chemicals

Part of the book series: Contemporary Endocrinology ((COE))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gore AC, Roberts JL. Neuroendocrine systems. Fundamental Neuroscience, 2nd ed. New York: Academic Press; 2003.

    Google Scholar 

  2. Mirescu C, Gould E. From neurotoxin to neurotrophin. Nat Neurosci 2004;7(9):899–900.

    Article  PubMed  CAS  Google Scholar 

  3. Mirescu C, Peters JD, Gould E. Early life experience alters response of adult neurogenesis to stress. Nat Neurosci 2004;7(8):841–6.

    Article  PubMed  CAS  Google Scholar 

  4. Ambrogini P, Cuppini R, Ferri P, Mancini C, Ciaroni S, Voci A, Gerdoni E, Gallo G. Thyroid hormones affect neurogenesis in the dentate gyrus of adult rat. Neuroendocrinology 2005;81(4):244–53.

    Article  PubMed  CAS  Google Scholar 

  5. Koibuchi N, Fukuda H, Chin WW. Promoter-specific regulation of the brain-derived neurotropic factor gene by thyroid hormone in the developing rat cerebellum. Endocrinology 1999;140(9):3955–61.

    Article  PubMed  CAS  Google Scholar 

  6. Schantz SL, Widholm JJ. Cognitive effects of endocrine-disrupting chemicals in animals. Environ Health Perspect 2001;109(12):1197–206.

    Article  PubMed  CAS  Google Scholar 

  7. Cooke PS, Buchanan DL, Lubahn DB, Cunha GR. Mechanism of estrogen action: lessons from the estrogen receptor-alpha knockout mouse. Biol Reprod 1998;59(3):470–5.

    Article  PubMed  CAS  Google Scholar 

  8. Zoeller RT. Environmental chemicals as thyroid hormone analogues: new studies indicate that thyroid hormone receptors are targets of industrial chemicals. Mol Cell Endocrinol 2005;242(1–2):10–5.

    Article  PubMed  CAS  Google Scholar 

  9. Moritz KM, Boon WM, Wintour EM. Glucocorticoid programming of adult disease. Cell Tissue Res 2005;322(1):81–8.

    Article  PubMed  CAS  Google Scholar 

  10. Kelce WR, Wilson EM. Environmental antiandrogens: developmental effects, molecular mechanisms, and clinical implications. J Mol Med 1997;75(3):198–207.

    Article  PubMed  CAS  Google Scholar 

  11. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998;139(10):4252–63.

    Article  PubMed  CAS  Google Scholar 

  12. Colosio C, Tiramani M, Maroni M. Neurobehavioral effects of pesticides: state of the art. Neurotoxicology 2003;24(4–5):577–91.

    Article  PubMed  CAS  Google Scholar 

  13. Caudle WM, Richardson JR, Wang M, Miller GW. Perinatal heptachlor exposure increases expression of presynaptic dopaminergic markers in mouse striatum. Neurotoxicology 2005;26(4):721–8.

    Article  PubMed  CAS  Google Scholar 

  14. Liu J, Brannen KC, Grayson DR, Morrow AL, Devaud LL, Lauder JM. Prenatal exposure to the pesticide dieldrin or the GABA(A) receptor antagonist bicuculline differentially alters expression of GABA(A) receptor subunit mRNAs in fetal rat brainstem. Dev Neurosci 1998;20(1):83–92.

    Article  PubMed  CAS  Google Scholar 

  15. Belsham DD, Lovejoy DA. Gonadotropin-releasing hormone: gene evolution, expression, and regulation. Vitam Horm 2005;71:59–94.

    Article  PubMed  CAS  Google Scholar 

  16. Meserve LA, Murray BA, Landis JA. Influence of maternal ingestion of aroclor 1254 (PCB) or FireMaster BP-6 (PBB) on unstimulated and stimulated corticosterone levels in young rats. Bull Environ Contam Toxicol 1992;48(5):715–20.

    Article  PubMed  CAS  Google Scholar 

  17. Schantz SL, Gasior DM, Polverejan E, McCaffrey RJ, Sweeney AM, Humphrey HE, Gardiner JC. Impairments of memory and learning in older adults exposed to polychlorinated biphenyls via consumption of Great Lakes fish. Environ Health Perspect 2001;109(6):605–11.

    Article  PubMed  CAS  Google Scholar 

  18. Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 2003;43:309–34.

    Article  PubMed  CAS  Google Scholar 

  19. Patisaul HB. Neonatal genistein or bisphenol – A exposure alters sexual differentiation of the AVPV. Neurotoxicol Teratol 2006;28(1):111–118.

    Article  PubMed  CAS  Google Scholar 

  20. Simerly RB. Organization and regulation of sexually dimorphic neuroendocrine pathways. Behav Brain Res 1998;92(2):195–203.

    Article  PubMed  CAS  Google Scholar 

  21. Palanza P, Morellini F, Parmigiani S, vom Saal FS. Prenatal exposure to endocrine disrupting chemicals: effects on behavioral development. Neurosci Biobehav Rev 1999;23(7):1011–27.

    Article  PubMed  CAS  Google Scholar 

  22. Matsumoto A. Synaptogenic action of sex steroids in developing and adult neuroendocrine brain. Psychoneuroendocrinology 1991;16(1–3):25–40.

    Article  PubMed  CAS  Google Scholar 

  23. Johansen JA, Jordan CL, Breedlove SM. Steroid hormone masculinization of neural structure in rats: a tale of two nuclei. Physiol Behav 2004;83(2):271–7.

    Article  PubMed  CAS  Google Scholar 

  24. Davis EC, Popper P, Gorski RA. The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res 1996;734(1–2):10–8.

    Article  PubMed  CAS  Google Scholar 

  25. Forger NG. Cell death and sexual differentiation of the nervous system. Neuroscience 2006;138(3):929–38.

    Article  PubMed  CAS  Google Scholar 

  26. Wiegand SJ, Terasawa E. Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Neuroendocrinology 1982;34(6):395–404.

    PubMed  CAS  Google Scholar 

  27. Sisk CL, Zehr JL. Pubertal hormones organize the adolescent brain and behavior. Front Neuro-endocrinol 2005;26(3–4):163–74.

    CAS  Google Scholar 

  28. Colbert T, Dumanoski D, Peterson Myers J. Our Stolen Future. New York: Penguin Group; 1997.

    Google Scholar 

  29. Gore AC, Heindel JJ, Zoeller RT. Endocrine disruption for endocrinologists (and others). Endocrinology 2006;147(6 Suppl):S1–3.

    Article  PubMed  CAS  Google Scholar 

  30. Ren MQ, Kuhn G, Wegner J, Nurnberg G, Chen J, Ender K. Feeding daidzein to late pregnant sows influences the estrogen receptor beta and type 1 insulin-like growth factor receptor mRNA expression in newborn piglets. J Endocrinol 2001;170(1):129–35.

    Article  PubMed  CAS  Google Scholar 

  31. Scallet AC, Wofford M, Meredith JC, Allaben WT, Ferguson SA. Dietary exposure to genistein increases vasopressin but does not alter beta-endorphin in the rat hypothalamus. Toxicol Sci 2003;72(2):296–300.

    Article  PubMed  CAS  Google Scholar 

  32. Marunaka Y. Hormonal and osmotic regulation of NaCl transport in renal distal nephron epithelium. Jpn J Physiol 1997;47(6):499–511.

    Article  PubMed  CAS  Google Scholar 

  33. de Vries GJ, Miller MA. Anatomy and function of extrahypothalamic vasopressin systems in the brain. Prog Brain Res 1998;119:3–20.

    PubMed  Google Scholar 

  34. Bu L, Lephart ED. Soy isoflavones modulate the expression of BAD and neuron-specific beta III tubulin in male rat brain. Neurosci Lett 2005;385(2):153–7.

    Article  PubMed  CAS  Google Scholar 

  35. Lewis RW, Brooks N, Milburn GM, Soames A, Stone S, Hall M, Ashby J. The effects of the phytoestrogen genistein on the postnatal development of the rat. Toxicol Sci 2003;71(1):74–83.

    Article  PubMed  CAS  Google Scholar 

  36. Scallet AC. Dietary exposure to genistein increases vasopressin, but does not alter beta-endorphin in the rat hypathalamus. Toxicol Sci 2003;72(2):296–300.

    Article  PubMed  CAS  Google Scholar 

  37. Faber KA, Hughes CL Jr. Dose-response characteristics of neonatal exposure to genistein on pituitary responsiveness to gonadotropin releasing hormone and volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) in postpubertal castrated female rats. Reprod Toxicol 1993;7(1):35–9.

    Article  PubMed  CAS  Google Scholar 

  38. Henry LA, Witt DM. Effects of neonatal resveratrol exposure on adult male and female reproductive physiology and behavior. Dev Neurosci 2006;28(3):186–95.

    Article  PubMed  CAS  Google Scholar 

  39. Kubo K, Arai O, Omura M, Watanabe R, Ogata R, Aou S. Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci Res 2003;45(3):345–56.

    Article  PubMed  CAS  Google Scholar 

  40. Anselmo-Franci JA, Franci CR, Krulich L, Antunes-Rodrigues J, McCann SM. Locus coeruleus lesions decrease norepinephrine input into the medial preoptic area and medial basal hypothalamus and block the LH, FSH and prolactin preovulatory surge. Brain Res 1997;767(2):289–96.

    Article  PubMed  CAS  Google Scholar 

  41. Faber KA, Hughes CL Jr. The effect of neonatal exposure to diethylstilbestrol, genistein, and zearalenone on pituitary responsiveness and sexually dimorphic nucleus volume in the castrated adult rat. Biol Reprod 1991;45(4):649–53.

    Article  PubMed  CAS  Google Scholar 

  42. Whitten PL, Lewis C, Russell E, Naftolin F. Phytoestrogen influences on the development of behavior and gonadotropin function. Proc Soc Exp Biol Med 1995;208(1):82–6.

    PubMed  CAS  Google Scholar 

  43. Kouki T, Kishitake M, Okamoto M, Oosuka I, Takebe M, Yamanouchi K. Effects of neonatal treatment with phytoestrogens, genistein and daidzein, on sex difference in female rat brain function: estrous cycle and lordosis. Horm Behav 2003;44(2):140–5.

    Article  PubMed  CAS  Google Scholar 

  44. Takagi H, Shibutani M, Lee KY, Masutomi N, Fujita H, Inoue K, Mitsumori K, Hirose M. Impact of maternal dietary exposure to endocrine-acting chemicals on progesterone receptor expression in microdissected hypothalamic medial preoptic areas of rat offspring. Toxicol Appl Pharmacol 2005;208(2):127–36.

    Article  PubMed  CAS  Google Scholar 

  45. Apostolakis EM, Ramamurphy M, Zhou D, Onate S, O’Malley BW. Acute disruption of select steroid receptor coactivators prevents reproductive behavior in rats and unmasks genetic adaptation in knockout mice. Mol Endocrinol 2002;16(7):1511–23.

    Article  PubMed  CAS  Google Scholar 

  46. Molenda HA, Griffin AL, Auger AP, McCarthy MM, Tetel MJ. Nuclear receptor coactivators modulate hormone-dependent gene expression in brain and female reproductive behavior in rats. Endocrinology 2002;143(2):436–4.

    Article  PubMed  CAS  Google Scholar 

  47. Charlier TD, Balthazart J. Modulation of hormonal signaling in the brain by steroid receptor coactivators. Rev Neurosci 2005;16(4):339–57.

    PubMed  CAS  Google Scholar 

  48. Compere V, Li S, Leprince J, Tonon MC, Vaudry H, Pelletier G. In vivo action of a new octadecaneuropeptide (ODN) antagonist on gonadotropin-releasing hormone gene expression in the male rat brain. Neuroscience 2004;125(2):411–5.

    Article  PubMed  CAS  Google Scholar 

  49. Masutomi N, Shibutani M, Takagi H, Uneyama C, Lee KY, Hirose M. Alteration of pituitary hormone-immunoreactive cell populations in rat offspring after maternal dietary exposure to endocrine-active chemicals. Arch Toxicol 2004;78(4):232–40.

    Article  PubMed  CAS  Google Scholar 

  50. Giros B, Caron MG. Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 1993;14(2):43–9.

    Article  PubMed  CAS  Google Scholar 

  51. Miller GW, Gainetdinov RR, Levey AI, Caron MG. Dopamine transporters and neuronal injury. Trends Pharmacol Sci 1999;20(10):424–9.

    Article  PubMed  CAS  Google Scholar 

  52. Le Saux M, Di Paolo T. Influence of oestrogenic compounds on monoamine transporters in rat striatum. J Neuroendocrinol 2006;18(1):25–32.

    Article  PubMed  CAS  Google Scholar 

  53. Jourdain S, Morissette M, Morin N, Di Paolo T. Oestrogens prevent loss of dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2) in substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. J Neuroendocrinol 2005;17(8):509–17.

    Article  PubMed  CAS  Google Scholar 

  54. Eriksson P, Ahlbom J, Fredriksson A. Exposure to DDT during a defined period in neonatal life induces permanent changes in brain muscarinic receptors and behaviour in adult mice. Brain Res 1992;582(2):277–81.

    Article  PubMed  CAS  Google Scholar 

  55. Masutomi N, Shibutani M, Takagi H, Uneyama C, Takahashi N, Hirose M. Impact of dietary exposure to methoxychlor, genistein, or diisononyl phthalate during the perinatal period on the development of the rat endocrine/reproductive systems in later life. Toxicology 2003;192(2–3):149–70.

    Article  PubMed  CAS  Google Scholar 

  56. Chapin RE, Harris MW, Davis BJ, Ward SM, Wilson RE, Mauney MA, Lockhart AC, Smialowicz RJ, Moser VC, Burka LT, Collins BJ. The effects of perinatal/juvenile methoxychlor exposure on adult rat nervous, immune, and reproductive system function. Fundam Appl Toxicol 1997;40(1):138–57.

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki M, Lee HC, Chiba S, Yonezawa T, Nishihara M. Effects of methoxychlor exposure during perinatal period on reproductive function after maturation in rats. J Reprod Dev 2004;50(4):455–61.

    Article  PubMed  CAS  Google Scholar 

  58. Amstislavsky SY, Amstislavskaya TG, Eroschenko VP. Methoxychlor given in the periimplantation period blocks sexual arousal in male mice. Reprod Toxicol 1999;13(5):405–11.

    Article  PubMed  CAS  Google Scholar 

  59. Eroschenko VP, Amstislavsky SY, Schwabel H, Ingermann RL. Altered behaviors in male mice, male quail, and salamander larvae following early exposures to the estrogenic pesticide methoxychlor. Neurotoxicol Teratol 2002;24(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  60. You L, Casanova M, Bartolucci EJ, Fryczynski MW, Dorman DC, Everitt JI, Gaido KW, Ross SM, Heck Hd H. Combined effects of dietary phytoestrogen and synthetic endocrine-active compound on reproductive development in Sprague-Dawley rats: genistein and methoxychlor. Toxicol Sci 2002;66(1):91–104.

    Article  PubMed  CAS  Google Scholar 

  61. Bulger WH, Kupfer D. Estrogenic action of DDT analogs. Am J Ind Med 1983;4(1–2):163–73.

    Article  PubMed  CAS  Google Scholar 

  62. Heinrichs WL, Gellert RJ, Bakke JL, Lawrence NL. DDT administered to neonatal rats induces persistent estrus syndrome. Science 1971;173(997):642–3.

    Article  PubMed  CAS  Google Scholar 

  63. Welch RM, Levin W, Conney AH. Estrogenic action of DDT and its analogs. Toxicol Appl Pharmacol 1969;14(2):358–67.

    Article  PubMed  CAS  Google Scholar 

  64. Parent AS, Rasier G, Gerard A, Heger S, Roth C, Mastronardi C, Jung H, Ojeda SR, Bourguignon JP. Early onset of puberty: tracking genetic and environmental factors. Horm Res 2005;64(Suppl 2):41–7.

    Article  PubMed  CAS  Google Scholar 

  65. Laviola G, Gioiosa L, Adriani W, Palanza P. D-amphetamine-related reinforcing effects are reduced in mice exposed prenatally to estrogenic endocrine disruptors. Brain Res Bull 2005;65(3):235–40.

    Article  PubMed  CAS  Google Scholar 

  66. Flynn KM, Delclos KB, Newbold RR, Ferguson SA. Long term dietary methoxychlor exposure in rats increases sodium solution consumption but has few effects on other sexually dimorphic behaviors. Food Chem Toxicol 2005;43(9):1345–54.

    Article  PubMed  CAS  Google Scholar 

  67. vom Saal FS, Nagel SC, Palanza P, Boechler M, Parmigiani S, Welshons WV. Estrogenic pesticides: binding relative to estradiol in MCF-7 cells and effects of exposure during fetal life on subsequent territorial behaviour in male mice. Toxicol Lett 1995;77(1–3):343–50.

    Article  Google Scholar 

  68. Palanza P, Morellini F, Parmigiani S, vom Saal FS. Ethological methods to study the effects of maternal exposure to estrogenic endocrine disrupters: a study with methoxychlor. Neurotoxicol Teratol 2002;24(1):55–69.

    Article  PubMed  CAS  Google Scholar 

  69. Palanza P, Parmigiani S, Liu H, vom Saal FS. Prenatal exposure to low doses of the estrogenic chemicals diethylstilbestrol and o,p^′-DDT alters aggressive behavior of male and female house mice. Pharmacol Biochem Behav 1999;64(4):665–72.

    Article  PubMed  CAS  Google Scholar 

  70. Palanza P, Parmigiani S, vom Saal FS. Effects of prenatal exposure to low doses of diethylstilbestrol, o,p^′DDT, and methoxychlor on postnatal growth and neurobehavioral development in male and female mice. Horm Behav 2001;40(2):252–65.

    Article  PubMed  CAS  Google Scholar 

  71. Engell MD, Godwin J, Young LJ, Vandenbergh JG. Perinatal exposure to endocrine disrupting compounds alters behavior and brain in the female pine vole. Neurotoxicol Teratol 2006;28(1):103–10.

    Article  PubMed  CAS  Google Scholar 

  72. Ferguson SA, Scallet AC, Flynn KM, Meredith JM, Schwetz BA. Developmental neurotoxicity of endocrine disrupters: focus on estrogens. Neurotoxicology 2000;21(6):947–56.

    PubMed  CAS  Google Scholar 

  73. Orikasa C, Kondo Y, Hayashi S, McEwen BS, Sakuma Y. Sexually dimorphic expression of estrogen receptor beta in the anteroventral periventricular nucleus of the rat preoptic area: implication in luteinizing hormone surge. Proc Natl Acad Sci USA 2002;99(5):3306–11.

    Article  PubMed  CAS  Google Scholar 

  74. Salama J, Chakraborty TR, Ng L, Gore AC. Effects of polychlorinated biphenyls on estrogen receptor-beta expression in the anteroventral periventricular nucleus. Environ Health Perspect 2003;111(10):1278–82.

    Article  PubMed  CAS  Google Scholar 

  75. Smith CL, Conneely OM, O’Malley BW. Modulation of the ligand-independent activation of the human estrogen receptor by hormone and antihormone. Proc Natl Acad Sci USA 1993;90(13):6120–4.

    Article  PubMed  CAS  Google Scholar 

  76. Seegal RF, Brosch KO, Okoniewski RJ. Coplanar PCB congeners increase uterine weight and frontal cortical dopamine in the developing rat: implications for developmental neurotoxicity. Toxicol Sci 2005;86(1):125–31.

    Article  PubMed  CAS  Google Scholar 

  77. Hany J, Lilienthal H, Sarasin A, Roth-Harer A, Fastabend A, Dunemann L, Lichtensteiger W, Winneke G. Developmental exposure of rats to a reconstituted PCB mixture or aroclor 1254: effects on organ weights, aromatase activity, sex hormone levels, and sweet preference behavior. Toxicol Appl Pharmacol 1999;158(3):231–43.

    Article  PubMed  CAS  Google Scholar 

  78. Juarez de Ku LM, Sharma-Stokkermans M, Meserve LA. Thyroxine normalizes polychlorinated biphenyl (PCB) dose-related depression of choline acetyltransferase (ChAT) activity in hippocampus and basal forebrain of 15-day-old rats. Toxicology 1994;94(1–3):19–30.

    Article  PubMed  CAS  Google Scholar 

  79. Corey DA, Juarez de Ku LM, Bingman VP, Meserve LA. Effects of exposure to polychlorinated biphenyl (PCB) from conception on growth, and development of endocrine, neurochemical, and cognitive measures in 60 day old rats. Growth Dev Aging 1996;60(3–4):131–43.

    PubMed  CAS  Google Scholar 

  80. Sapolsky RM, Krey LC, McEwen BS. The adrenocortical axis in the aged rat: impaired sensitivity to both fast and delayed feedback inhibition. Neurobiol Aging 1986;7(5):331–5.

    Article  PubMed  CAS  Google Scholar 

  81. Morse DC, Seegal RF, Borsch KO, Brouwer A. Long-term alterations in regional brain serotonin metabolism following maternal polychlorinated biphenyl exposure in the rat. Neurotoxicology 1996;17(3–4):631–8.

    PubMed  CAS  Google Scholar 

  82. Roegge CS, Wang VC, Powers BE, Klintsova AY, Villareal S, Greenough WT, Schantz SL. Motor impairment in rats exposed to PCBs and methylmercury during early development. Toxicol Sci 2004;77(2):315–24.

    Article  PubMed  CAS  Google Scholar 

  83. Pruitt DL, Meserve LA, Bingman VP. Reduced growth of intra- and infra-pyramidal mossy fibers is produced by continuous exposure to polychlorinated biphenyl. Toxicology 1999;138(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  84. Nguon K, Baxter MG, Sajdel-Sulkowska EM. Perinatal exposure to polychlorinated biphenyls differentially affects cerebellar development and motor functions in male and female rat neonates. Cerebellum 2005;4(2):112–22.

    Article  PubMed  CAS  Google Scholar 

  85. Lyche JL, Oskam IC, Skaare JU, Reksen O, Sweeney T, Dahl E, Farstad W, Ropstad E. Effects of gestational and lactational exposure to low doses of PCBs 126 and 153 on anterior pituitary and gonadal hormones and on puberty in female goats. Reprod Toxicol 2004;19(1):87–95.

    Article  PubMed  CAS  Google Scholar 

  86. Chung YW, Nunez AA, Clemens LG. Effects of neonatal polychlorinated biphenyl exposure on female sexual behavior. Physiol Behav 2001;74(3):363–70.

    Article  PubMed  CAS  Google Scholar 

  87. Chung YW, Clemens LG. Effects of perinatal exposure to polychlorinated biphenyls on development of female sexual behavior. Bull Environ Contam Toxicol 1999;62(6):664–70.

    Article  PubMed  CAS  Google Scholar 

  88. Steinberg R, Walker D, Gore A. Prenatal PCB Exposure Results in Altered Development and Sexual Behaviors in Female Rats. Endocrine Society Forum on Endocrine-Disrupting Chemicals Abst, San Diego, CA, 2005.

    Google Scholar 

  89. Kaya H, Hany J, Fastabend A, Roth-Harer A, Winneke G, Lilienthal H. Effects of maternal exposure to a reconstituted mixture of polychlorinated biphenyls on sex-dependent behaviors and steroid hormone concentrations in rats: dose-response relationship. Toxicol Appl Pharmacol 2002;178(2):71–81.

    Article  PubMed  CAS  Google Scholar 

  90. Kuriyama SN, Chahoud I. In utero exposure to low-dose 2,3^′,4,4^′,5-pentachlorobiphenyl (PCB 118) impairs male fertility and alters neurobehavior in rat offspring. Toxicology 2004;202(3):185–97.

    Article  PubMed  CAS  Google Scholar 

  91. Overmann SR, Kostas J, Wilson LR, Shain W, Bush B. Neurobehavioral and somatic effects of perinatal PCB exposure in rats. Environ Res 1987;44(1):56–70.

    Article  PubMed  CAS  Google Scholar 

  92. Branchi I, Capone F, Vitalone A, Madia F, Santucci D, Alleva E, Costa LG. Early developmental exposure to BDE 99 or Aroclor 1254 affects neurobehavioural profile: interference from the administration route. Neurotoxicology 2005;26(2):183–92.

    Article  PubMed  CAS  Google Scholar 

  93. Roegge CS, Schantz SL. Motor function following developmental exposure to PCBS and/or MEHG. Neurotoxicol Teratol 2006;28(2):260–77.

    Article  PubMed  CAS  Google Scholar 

  94. Roegge CS, Morris JR, Villareal S, Wang VC, Powers BE, Klintsova AY, Greenough WT, Pessah IN, Schantz SL. Purkinje cell and cerebellar effects following developmental exposure to PCBs and/or MeHg. Neurotoxicol Teratol 2006;28(1):74–85.

    Article  PubMed  CAS  Google Scholar 

  95. Seegal RF, Schantz SL. Neurochemical and Behavioral Sequelae of Exposure to Dioxins and PCBs. In Dioxins and Health. New york: Plenum Press; 1994;409–447.

    Google Scholar 

  96. Weiss B. Sexually dimorphic nonreproductive behaviors as indicators of endocrine disruption. Environ Health Perspect 2002;110(Suppl 3):387–91.

    PubMed  Google Scholar 

  97. Gore A. Modulation of the GnRH gene and onset of puberty. Control of the Onset of Puberty. Amsterdam: Elsevier; 2000;25–35.

    Google Scholar 

  98. Golub MS, Germann SL, Hogrefe CE. Endocrine disruption and cognitive function in adolescent female rhesus monkeys. Neurotoxicol Teratol 2004;26(6):799–809.

    Article  PubMed  CAS  Google Scholar 

  99. Golub MS. Adolescent health and the environment. Environ Health Perspect 2000;108(4):355–62.

    Article  PubMed  CAS  Google Scholar 

  100. Patisaul HB, Melby M, Whitten PL, Young LJ. Genistein affects ER beta- but not ER alpha-dependent gene expression in the hypothalamus. Endocrinology 2002;143(6):2189–97.

    Article  PubMed  CAS  Google Scholar 

  101. Moore TO, Karom M, O’Farrell L. The neurobehavioral effects of phytoestrogens in male Syrian hamsters. Brain Res 2004;1016(1):102–10.

    Article  PubMed  CAS  Google Scholar 

  102. Gray LE Jr, Ostby J, Ferrell J, Rehnberg G, Linder R, Cooper R, Goldman J, Slott V, Laskey J. A dose-response analysis of methoxychlor-induced alterations of reproductive development and function in the rat. Fundam Appl Toxicol 1989;12(1):92–108.

    Article  PubMed  CAS  Google Scholar 

  103. Laws SC, Carey SA, Ferrell JM, Bodman GJ, Cooper RL. Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol Sci 2000;54(1):154–67.

    Article  PubMed  CAS  Google Scholar 

  104. Cooper RL, Chadwick RW, Rehnberg GL, Goldman JM, Booth KC, Hein JF, McElroy WK. Effect of lindane on hormonal control of reproductive function in the female rat. Toxicol Appl Pharmacol 1989;99(3):384–94.

    Article  PubMed  CAS  Google Scholar 

  105. Gray LE Jr, Ostby JS, Ferrell JM, Sigmon ER, Goldman JM. Methoxychlor induces estrogen-like alterations of behavior and the reproductive tract in the female rat and hamster: effects on sex behavior, running wheel activity, and uterine morphology. Toxicol Appl Pharmacol 1988;96(3):525–40.

    Article  PubMed  CAS  Google Scholar 

  106. Rasier G, Toppari J, Parent AS, Bourguignon JP. Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data. Mol Cell Endocrinol 2006;254–255:187–201.

    Article  PubMed  CAS  Google Scholar 

  107. Gray LE Jr, Ostby J, Cooper RL, Kelce WR. The estrogenic and antiandrogenic pesticide methoxychlor alters the reproductive tract and behavior without affecting pituitary size or LH and prolactin secretion in male rats. Toxicol Ind Health 1999;15(1–2):37–47.

    Article  PubMed  Google Scholar 

  108. Goldman JM, Cooper RL, Rehnberg GL, Hein JF, McElroy WK, Gray LE Jr. Effects of low subchronic doses of methoxychlor on the rat hypothalamic-pituitary reproductive axis. Toxicol Appl Pharmacol 1986;86(3):474–83.

    Article  PubMed  CAS  Google Scholar 

  109. Gupta A, Agarwal R, Shukla GS. Functional impairment of blood-brain barrier following pesticide exposure during early development in rats. Hum Exp Toxicol 1999;18(3):174–9.

    Article  PubMed  CAS  Google Scholar 

  110. Malkiewicz K, Mohammed R, Folkesson R, Winblad B, Szutowski M, Benedikz E. Polychlorinated biphenyls alter expression of alpha-synuclein, synaptophysin and parkin in the rat brain. Toxicol Lett 2006;161(2):152–8.

    Article  PubMed  CAS  Google Scholar 

  111. Abeliovich A, Beal MF. Parkinsonism genes: culprits and clues. J Neurochem 2006;99(4):1062–72.

    Article  PubMed  CAS  Google Scholar 

  112. Maffucci J, Gore A. Age-related changes in hormones and their receptors in animal models of female reproductive senescence. Handbook of Models for Human Aging. Amsterdam Academic Press/ Elsevier; 2006.

    Google Scholar 

  113. Perz JM. Development of the menopause symptom list: a factor analytic study of menopause associated symptoms. Women Health 1997;25(1):53–69.

    Article  PubMed  CAS  Google Scholar 

  114. McEwen BS. Invited review: estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol 2001;91(6):2785–801.

    PubMed  CAS  Google Scholar 

  115. Patisaul HB, Dindo M, Whitten PL, Young LJ. Soy isoflavone supplements antagonize reproductive behavior and estrogen receptor alpha- and beta-dependent gene expression in the brain. Endocrinology 2001;142(7):2946–52.

    Article  PubMed  CAS  Google Scholar 

  116. Patisaul HB, Whitten PL, Young LJ. Regulation of estrogen receptor beta mRNA in the brain: opposite effects of 17beta-estradiol and the phytoestrogen, coumestrol. Brain Res Mol Brain Res 1999;67(1):165–71.

    Article  PubMed  CAS  Google Scholar 

  117. Jacob DA, Temple JL, Patisaul HB, Young LJ, Rissman EF. Coumestrol antagonizes neuroendocrine actions of estrogen via the estrogen receptor alpha. Exp Biol Med (Maywood) 2001;226(4):301–6.

    CAS  Google Scholar 

  118. Lund TD, Rhees RW, Setchell KD, Lephart ED. Altered sexually dimorphic nucleus of the preoptic area (SDN-POA) volume in adult Long-Evans rats by dietary soy phytoestrogens. Brain Res 2001;914(1–2):92–9.

    Article  PubMed  CAS  Google Scholar 

  119. Linford NJ, Dorsa DM. 17beta-estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin. Steroids 2002;67(13–14):1029–40.

    Article  PubMed  CAS  Google Scholar 

  120. McGarvey C, Cates PA, Brooks A, Swanson IA, Milligan SR, Coen CW, O’Byrne KT. Phytoestrogens and gonadotropin-releasing hormone pulse generator activity and pituitary luteinizing hormone release in the rat. Endocrinology 2001;142(3):1202–8.

    Article  PubMed  CAS  Google Scholar 

  121. Bu LH, Lephart ED. Effects of dietary phytoestrogens on core body temperature during the estrous cycle and pregnancy. Brain Res Bull 2005;65(3):219–3.

    Article  PubMed  CAS  Google Scholar 

  122. Patisaul HB, Luskin JR, Wilson ME. A soy supplement and tamoxifen inhibit sexual behavior in female rats. Horm Behav 2004;45(4):270–7.

    Article  PubMed  CAS  Google Scholar 

  123. Hartley DE, Edwards JE, Spiller CE, Alom N, Tucci S, Seth P, Forsling ML, File SE. The soya isoflavone content of rat diet can increase anxiety and stress hormone release in the male rat. Psychopharmacology (Berl) 2003;167(1):46–53.

    CAS  Google Scholar 

  124. Simon NG, Kaplan JR, Hu S, Register TC, Adams MR. Increased aggressive behavior and decreased affiliative behavior in adult male monkeys after long-term consumption of diets rich in soy protein and isoflavones. Horm Behav 2004;45(4):278–84.

    Article  PubMed  CAS  Google Scholar 

  125. Szyf M, Weaver IC, Champagne FA, Diorio J, Meaney MJ. Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol 2005;26(3–4):139–62.

    Article  PubMed  CAS  Google Scholar 

  126. Flynn KM, Ferguson SA, Delclos KB, Newbold RR. Multigenerational exposure to dietary genistein has no severe effects on nursing behavior in rats. Neurotoxicology 2000;21(6):997–1001.

    PubMed  CAS  Google Scholar 

  127. Lee YB, Lee HJ, Won MH, Hwang IK, Kang TC, Lee JY, Nam SY, Kim KS, Kim E, Cheon SH, Sohn HS. Soy isoflavones improve spatial delayed matching-to-place performance and reduce cholinergic neuron loss in elderly male rats. J Nutr 2004;134(7):1827–31.

    PubMed  CAS  Google Scholar 

  128. Ho KP, Li L, Zhao L, Qian ZM. Genistein protects primary cortical neurons from iron-induced lipid peroxidation. Mol Cell Biochem 2003;247(1–2):219–2.

    Article  PubMed  CAS  Google Scholar 

  129. Sonee M, Sum T, Wang C, Mukherjee SK. The soy isoflavone, genistein, protects human cortical neuronal cells from oxidative stress. Neurotoxicology 2004;25(5):885–91.

    Article  PubMed  CAS  Google Scholar 

  130. Zhao L, Chen Q, Diaz Brinton R. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp Biol Med (Maywood) 2002;227(7):509–19.

    CAS  Google Scholar 

  131. Gao ZB, Hu GY. Trans-resveratrol, a red wine ingredient, inhibits voltage-activated potassium currents in rat hippocampal neurons. Brain Res 2005;1056(1):68–75.

    Article  PubMed  CAS  Google Scholar 

  132. Kasdallah-Grissa A, Mornagui B, Aouani E, Hammami M, Gharbi N, Kamoun A, El-Fazaa S. Protective effect of resveratrol on ethanol-induced lipid peroxidation in rats. Alcohol Alcohol 2006;41(3):236–9.

    PubMed  CAS  Google Scholar 

  133. Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 2005;280(45):37377–82.

    Article  PubMed  CAS  Google Scholar 

  134. Yanez M, Fraiz N, Cano E, Orallo F. Inhibitory effects of cis- and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem Biophys Res Commun 2006;344(2):688–95.

    Article  PubMed  CAS  Google Scholar 

  135. Choi EJ, Lee BH. Evidence for genistein mediated cytotoxicity and apoptosis in rat brain. Life Sci 2004;75(4):499–509.

    Article  PubMed  CAS  Google Scholar 

  136. Lee YB, Lee HJ, Sohn HS. Soy isoflavones and cognitive function. J Nutr Biochem 2005;16(11):641–9.

    Article  PubMed  CAS  Google Scholar 

  137. Lund TD, West TW, Tian LY, Bu LH, Simmons DL, Setchell KD, Adlercreutz H, Lephart ED. Visual spatial memory is enhanced in female rats (but inhibited in males) by dietary soy phytoestrogens. BMC Neurosci 2001;2:20.

    Article  PubMed  CAS  Google Scholar 

  138. Heo HJ, Suh YM, Kim MJ, Choi SJ, Mun NS, Kim HK, Kim E, Kim CJ, Cho HY, Kim YJ, Shin DH. Daidzein activates choline acetyltransferase from MC-IXC cells and improves drug-induced amnesia. Biosci Biotechnol Biochem 2006;70(1):107–11.

    Article  PubMed  CAS  Google Scholar 

  139. Mussi P, Ciana P, Raviscioni M, Villa R, Regondi S, Agradi E, Maggi A, Di Lorenzo D. Activation of brain estrogen receptors in mice lactating from mothers exposed to DDT. Brain Res Bull 2005;65(3):241–7.

    Article  PubMed  CAS  Google Scholar 

  140. Goldman JM, Murr AS, Buckalew AR, Schmid JE, Abbott BD. Methoxychlor-induced alterations in the histological expression of angiogenic factors in pituitary and uterus. J Mol Histol 2004;35(4):363–75.

    Article  PubMed  CAS  Google Scholar 

  141. Kirby ML, Barlow RL, Bloomquist JR. Neurotoxicity of the organochlorine insecticide heptachlor to murine striatal dopaminergic pathways. Toxicol Sci 2001;61(1):100–6.

    Article  PubMed  CAS  Google Scholar 

  142. Schuh RA, Kristian T, Gupta RK, Flaws JA, Fiskum G. Methoxychlor inhibits brain mitochondrial respiration and increases hydrogen peroxide production and CREB phosphorylation. Toxicol Sci 2005;88(2):495–504.

    Article  PubMed  CAS  Google Scholar 

  143. Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V. Dieldrin-induced neurotoxicity: relevance to Parkinson’s disease pathogenesis. Neurotoxicology 2005;26(4):701–19.

    Article  PubMed  CAS  Google Scholar 

  144. Seegal RF, Bush B, Brosch KO. Comparison of effects of Aroclors 1016 and 1260 on non-human primate catecholamine function. Toxicology 1991;66(2):145–63.

    Article  PubMed  CAS  Google Scholar 

  145. Seegal RF, Bush B, Brosch KO. Sub-chronic exposure of the adult rat to Aroclor 1254 yields regionally-specific changes in central dopaminergic function. Neurotoxicology 1991;12(1):55–65.

    PubMed  CAS  Google Scholar 

  146. Seegal RF, Bush B, Brosch KO. Decreases in dopamine concentrations in adult, non-human primate brain persist following removal from polychlorinated biphenyls. Toxicology 1994;86(1–2):71–87.

    Article  PubMed  CAS  Google Scholar 

  147. Seegal RF. The neurochemical effects of PCB exposure are age-dependent. Arch Toxicol Suppl 1994;16:128–37.

    PubMed  CAS  Google Scholar 

  148. Seegal RF, Brosch KO, Bush B. Regional alterations in serotonin metabolism induced by oral exposure of rats to polychlorinated biphenyls. Neurotoxicology 1986;7(1):155–65.

    PubMed  CAS  Google Scholar 

  149. Seegal RF, Bush B, Brosch KO. Polychlorinated biphenyls induce regional changes in brain norepinephrine concentrations in adult rats. Neurotoxicology 1985;6(3):13–23.

    PubMed  CAS  Google Scholar 

  150. Muthuvel R, Venkataraman P, Krishnamoorthy G, Gunadharini DN, Kanagaraj P, Jone Stanley A, Srinivasan N, Balasubramanian K, Aruldhas MM, Arunakaran J. Antioxidant effect of ascorbic acid on PCB (Aroclor 1254) induced oxidative stress in hypothalamus of albino rats. Clin Chim Acta 2006;365(1–2):297–303.

    Article  PubMed  CAS  Google Scholar 

  151. Brezner E, Terkel J, Perry AS. The effect of Aroclor 1254 (PCB) on the physiology of reproduction in the female rat–I. Comp Biochem Physiol C 1984;77(1):65–70.

    Article  PubMed  CAS  Google Scholar 

  152. Cummings JA, Nunez AA, Clemens LG. A cross-fostering analysis of the effects of PCB 77 on the maternal behavior of rats. Physiol Behav 2005;85(2):83–91.

    Article  PubMed  CAS  Google Scholar 

  153. Simmons SL, Cummings JA, Clemens LG, Nunez AA. Exposure to PCB 77 affects the maternal behavior of rats. Physiol Behav 2005;84(1):81–6.

    Article  PubMed  CAS  Google Scholar 

  154. Faroon O, Jones D, de Rosa C. Effects of polychlorinated biphenyls on the nervous system. Toxicol Ind Health 2001;16(7–8):305–3.

    PubMed  CAS  Google Scholar 

  155. Altenkirch H, Stoltenburg G, Haller D, Hopmann D, Walter G. Clinical data on three cases of occupationally induced PCB-intoxication. Neurotoxicology 1996;17(3–4):639–43.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Walker, D.M., Gore, A.C. (2007). Endocrine-Disrupting Chemicals and the Brain. In: Gore, A.C. (eds) Endocrine-Disrupting Chemicals. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/1-59745-107-X_4

Download citation

  • DOI: https://doi.org/10.1007/1-59745-107-X_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-830-0

  • Online ISBN: 978-1-59745-107-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics